Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj600 Structured version   Visualization version   GIF version

Theorem bnj600 30989
Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj600.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj600.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj600.3 𝐷 = (ω ∖ {∅})
bnj600.4 (𝜒 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
bnj600.5 (𝜃 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜒))
bnj600.10 (𝜑′[𝑚 / 𝑛]𝜑)
bnj600.11 (𝜓′[𝑚 / 𝑛]𝜓)
bnj600.12 (𝜒′[𝑚 / 𝑛]𝜒)
bnj600.13 (𝜑″[𝐺 / 𝑓]𝜑)
bnj600.14 (𝜓″[𝐺 / 𝑓]𝜓)
bnj600.15 (𝜒″[𝐺 / 𝑓]𝜒)
bnj600.16 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj600.17 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj600.18 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj600.19 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
bnj600.20 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
bnj600.21 (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))
bnj600.22 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
bnj600.23 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
bnj600.24 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj600.25 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
bnj600.26 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
Assertion
Ref Expression
bnj600 (𝑛 ≠ 1𝑜 → ((𝑛𝐷𝜃) → 𝜒))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑚,𝑛,𝑝   𝑦,𝐴,𝑓,𝑖,𝑛,𝑝   𝐷,𝑓,𝑝   𝑖,𝐺,𝑦   𝑅,𝑓,𝑖,𝑚,𝑛,𝑝   𝑦,𝑅   𝜂,𝑓,𝑖   𝑥,𝑓,𝑚,𝑛,𝑝   𝑖,𝜑′,𝑝   𝜑,𝑚,𝑝   𝜓,𝑚,𝑝   𝜃,𝑝
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜓(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜒(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜃(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑥,𝑦,𝑚,𝑛,𝑝)   𝜁(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜌(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥)   𝐵(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑥,𝑦,𝑖,𝑚,𝑛)   𝑅(𝑥)   𝐺(𝑥,𝑓,𝑚,𝑛,𝑝)   𝐾(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐿(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑥,𝑦,𝑓,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑″(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓″(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒″(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj600
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj600.5 . . . . . 6 (𝜃 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜒))
2 bnj600.13 . . . . . 6 (𝜑″[𝐺 / 𝑓]𝜑)
3 bnj600.14 . . . . . 6 (𝜓″[𝐺 / 𝑓]𝜓)
4 bnj600.17 . . . . . 6 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
5 bnj600.19 . . . . . 6 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
6 bnj600.16 . . . . . . 7 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
76bnj528 30959 . . . . . 6 𝐺 ∈ V
8 bnj600.4 . . . . . . 7 (𝜒 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
9 bnj600.10 . . . . . . 7 (𝜑′[𝑚 / 𝑛]𝜑)
10 bnj600.11 . . . . . . 7 (𝜓′[𝑚 / 𝑛]𝜓)
11 bnj600.12 . . . . . . 7 (𝜒′[𝑚 / 𝑛]𝜒)
12 vex 3203 . . . . . . 7 𝑚 ∈ V
138, 9, 10, 11, 12bnj207 30951 . . . . . 6 (𝜒′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑚𝜑′𝜓′)))
14 bnj600.1 . . . . . . 7 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
1514, 2, 7bnj609 30987 . . . . . 6 (𝜑″ ↔ (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅))
16 bnj600.2 . . . . . . 7 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
1716, 3, 7bnj611 30988 . . . . . 6 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
18 bnj600.3 . . . . . . . . . 10 𝐷 = (ω ∖ {∅})
1918bnj168 30798 . . . . . . . . 9 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚𝐷 𝑛 = suc 𝑚)
20 df-rex 2918 . . . . . . . . 9 (∃𝑚𝐷 𝑛 = suc 𝑚 ↔ ∃𝑚(𝑚𝐷𝑛 = suc 𝑚))
2119, 20sylib 208 . . . . . . . 8 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚(𝑚𝐷𝑛 = suc 𝑚))
2218bnj158 30797 . . . . . . . . . . . . . 14 (𝑚𝐷 → ∃𝑝 ∈ ω 𝑚 = suc 𝑝)
23 df-rex 2918 . . . . . . . . . . . . . 14 (∃𝑝 ∈ ω 𝑚 = suc 𝑝 ↔ ∃𝑝(𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
2422, 23sylib 208 . . . . . . . . . . . . 13 (𝑚𝐷 → ∃𝑝(𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
2524adantr 481 . . . . . . . . . . . 12 ((𝑚𝐷𝑛 = suc 𝑚) → ∃𝑝(𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
2625ancri 575 . . . . . . . . . . 11 ((𝑚𝐷𝑛 = suc 𝑚) → (∃𝑝(𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ∧ (𝑚𝐷𝑛 = suc 𝑚)))
2726bnj534 30808 . . . . . . . . . 10 ((𝑚𝐷𝑛 = suc 𝑚) → ∃𝑝((𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ∧ (𝑚𝐷𝑛 = suc 𝑚)))
28 bnj432 30782 . . . . . . . . . . 11 ((𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ ((𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ∧ (𝑚𝐷𝑛 = suc 𝑚)))
2928exbii 1774 . . . . . . . . . 10 (∃𝑝(𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ ∃𝑝((𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ∧ (𝑚𝐷𝑛 = suc 𝑚)))
3027, 29sylibr 224 . . . . . . . . 9 ((𝑚𝐷𝑛 = suc 𝑚) → ∃𝑝(𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
3130eximi 1762 . . . . . . . 8 (∃𝑚(𝑚𝐷𝑛 = suc 𝑚) → ∃𝑚𝑝(𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
3221, 31syl 17 . . . . . . 7 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚𝑝(𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
3352exbii 1775 . . . . . . 7 (∃𝑚𝑝𝜂 ↔ ∃𝑚𝑝(𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
3432, 33sylibr 224 . . . . . 6 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚𝑝𝜂)
35 rsp 2929 . . . . . . . . 9 (∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜒) → (𝑚𝐷 → (𝑚 E 𝑛[𝑚 / 𝑛]𝜒)))
361, 35sylbi 207 . . . . . . . 8 (𝜃 → (𝑚𝐷 → (𝑚 E 𝑛[𝑚 / 𝑛]𝜒)))
37363imp 1256 . . . . . . 7 ((𝜃𝑚𝐷𝑚 E 𝑛) → [𝑚 / 𝑛]𝜒)
3837, 11sylibr 224 . . . . . 6 ((𝜃𝑚𝐷𝑚 E 𝑛) → 𝜒′)
39 bnj600.18 . . . . . . 7 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
4014, 9, 12bnj523 30957 . . . . . . . 8 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
4116, 10, 12bnj539 30961 . . . . . . . 8 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
4240, 41, 18, 6, 4, 39bnj544 30964 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
4339, 5, 42bnj561 30973 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝐺 Fn 𝑛)
4440, 18, 6, 4, 39, 42, 15bnj545 30965 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝜑″)
4539, 5, 44bnj562 30974 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝜑″)
46 bnj600.20 . . . . . . 7 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
47 bnj600.22 . . . . . . 7 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
48 bnj600.23 . . . . . . 7 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
49 bnj600.24 . . . . . . 7 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
50 bnj600.25 . . . . . . 7 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
51 bnj600.26 . . . . . . 7 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
52 bnj600.21 . . . . . . 7 (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))
5318, 6, 4, 39, 5, 46, 47, 48, 49, 50, 51, 40, 41, 42, 52, 43, 17bnj571 30976 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝜓″)
54 biid 251 . . . . . 6 ([𝑧 / 𝑓]𝜑[𝑧 / 𝑓]𝜑)
55 biid 251 . . . . . 6 ([𝑧 / 𝑓]𝜓[𝑧 / 𝑓]𝜓)
56 biid 251 . . . . . 6 ([𝐺 / 𝑧][𝑧 / 𝑓]𝜑[𝐺 / 𝑧][𝑧 / 𝑓]𝜑)
57 biid 251 . . . . . 6 ([𝐺 / 𝑧][𝑧 / 𝑓]𝜓[𝐺 / 𝑧][𝑧 / 𝑓]𝜓)
581, 2, 3, 4, 5, 7, 13, 15, 17, 34, 38, 43, 45, 53, 14, 16, 54, 55, 56, 57bnj607 30986 . . . . 5 ((𝑛 ≠ 1𝑜𝑛𝐷𝜃) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 𝑛𝜑𝜓)))
5914, 16, 18bnj579 30984 . . . . . . 7 (𝑛𝐷 → ∃*𝑓(𝑓 Fn 𝑛𝜑𝜓))
6059a1d 25 . . . . . 6 (𝑛𝐷 → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 𝑛𝜑𝜓)))
61603ad2ant2 1083 . . . . 5 ((𝑛 ≠ 1𝑜𝑛𝐷𝜃) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 𝑛𝜑𝜓)))
6258, 61jcad 555 . . . 4 ((𝑛 ≠ 1𝑜𝑛𝐷𝜃) → ((𝑅 FrSe 𝐴𝑥𝐴) → (∃𝑓(𝑓 Fn 𝑛𝜑𝜓) ∧ ∃*𝑓(𝑓 Fn 𝑛𝜑𝜓))))
63 eu5 2496 . . . 4 (∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) ↔ (∃𝑓(𝑓 Fn 𝑛𝜑𝜓) ∧ ∃*𝑓(𝑓 Fn 𝑛𝜑𝜓)))
6462, 63syl6ibr 242 . . 3 ((𝑛 ≠ 1𝑜𝑛𝐷𝜃) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
6564, 8sylibr 224 . 2 ((𝑛 ≠ 1𝑜𝑛𝐷𝜃) → 𝜒)
66653expib 1268 1 (𝑛 ≠ 1𝑜 → ((𝑛𝐷𝜃) → 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  ∃!weu 2470  ∃*wmo 2471  wne 2794  wral 2912  wrex 2913  [wsbc 3435  cdif 3571  cun 3572  c0 3915  {csn 4177  cop 4183   ciun 4520   class class class wbr 4653   E cep 5028  suc csuc 5725   Fn wfn 5883  cfv 5888  ωcom 7065  1𝑜c1o 7553  w-bnj17 30752   predc-bnj14 30754   FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759
This theorem is referenced by:  bnj601  30990
  Copyright terms: Public domain W3C validator