Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brco2f1o Structured version   Visualization version   Unicode version

Theorem brco2f1o 38330
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.)
Hypotheses
Ref Expression
brco2f1o.c  |-  ( ph  ->  C : Y -1-1-onto-> Z )
brco2f1o.d  |-  ( ph  ->  D : X -1-1-onto-> Y )
brco2f1o.r  |-  ( ph  ->  A ( C  o.  D ) B )
Assertion
Ref Expression
brco2f1o  |-  ( ph  ->  ( ( `' C `  B ) C B  /\  A D ( `' C `  B ) ) )

Proof of Theorem brco2f1o
StepHypRef Expression
1 brco2f1o.d . . . 4  |-  ( ph  ->  D : X -1-1-onto-> Y )
2 f1ocnv 6149 . . . 4  |-  ( D : X -1-1-onto-> Y  ->  `' D : Y -1-1-onto-> X )
3 f1ofn 6138 . . . 4  |-  ( `' D : Y -1-1-onto-> X  ->  `' D  Fn  Y
)
41, 2, 33syl 18 . . 3  |-  ( ph  ->  `' D  Fn  Y
)
5 brco2f1o.c . . . 4  |-  ( ph  ->  C : Y -1-1-onto-> Z )
6 f1ocnv 6149 . . . 4  |-  ( C : Y -1-1-onto-> Z  ->  `' C : Z -1-1-onto-> Y )
7 f1of 6137 . . . 4  |-  ( `' C : Z -1-1-onto-> Y  ->  `' C : Z --> Y )
85, 6, 73syl 18 . . 3  |-  ( ph  ->  `' C : Z --> Y )
9 brco2f1o.r . . . 4  |-  ( ph  ->  A ( C  o.  D ) B )
10 relco 5633 . . . . . 6  |-  Rel  ( C  o.  D )
1110relbrcnv 5506 . . . . 5  |-  ( B `' ( C  o.  D ) A  <->  A ( C  o.  D ) B )
12 cnvco 5308 . . . . . 6  |-  `' ( C  o.  D )  =  ( `' D  o.  `' C )
1312breqi 4659 . . . . 5  |-  ( B `' ( C  o.  D ) A  <->  B ( `' D  o.  `' C ) A )
1411, 13bitr3i 266 . . . 4  |-  ( A ( C  o.  D
) B  <->  B ( `' D  o.  `' C ) A )
159, 14sylib 208 . . 3  |-  ( ph  ->  B ( `' D  o.  `' C ) A )
164, 8, 15brcoffn 38328 . 2  |-  ( ph  ->  ( B `' C
( `' C `  B )  /\  ( `' C `  B ) `' D A ) )
17 f1orel 6140 . . . 4  |-  ( C : Y -1-1-onto-> Z  ->  Rel  C )
18 relbrcnvg 5504 . . . 4  |-  ( Rel 
C  ->  ( B `' C ( `' C `  B )  <->  ( `' C `  B ) C B ) )
195, 17, 183syl 18 . . 3  |-  ( ph  ->  ( B `' C
( `' C `  B )  <->  ( `' C `  B ) C B ) )
20 f1orel 6140 . . . 4  |-  ( D : X -1-1-onto-> Y  ->  Rel  D )
21 relbrcnvg 5504 . . . 4  |-  ( Rel 
D  ->  ( ( `' C `  B ) `' D A  <->  A D
( `' C `  B ) ) )
221, 20, 213syl 18 . . 3  |-  ( ph  ->  ( ( `' C `  B ) `' D A 
<->  A D ( `' C `  B ) ) )
2319, 22anbi12d 747 . 2  |-  ( ph  ->  ( ( B `' C ( `' C `  B )  /\  ( `' C `  B ) `' D A )  <->  ( ( `' C `  B ) C B  /\  A D ( `' C `  B ) ) ) )
2416, 23mpbid 222 1  |-  ( ph  ->  ( ( `' C `  B ) C B  /\  A D ( `' C `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   class class class wbr 4653   `'ccnv 5113    o. ccom 5118   Rel wrel 5119    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator