![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brfvopabrbr | Structured version Visualization version GIF version |
Description: The binary relation of a function value which is an ordered-pair class abstraction of a restricted binary relation is the restricted binary relation. The first hypothesis can often be obtained by using fvmptopab 6697. (Contributed by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
brfvopabrbr.1 | ⊢ (𝐴‘𝑍) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐵‘𝑍)𝑦 ∧ 𝜑)} |
brfvopabrbr.2 | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) |
brfvopabrbr.3 | ⊢ Rel (𝐵‘𝑍) |
Ref | Expression |
---|---|
brfvopabrbr | ⊢ (𝑋(𝐴‘𝑍)𝑌 ↔ (𝑋(𝐵‘𝑍)𝑌 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brne0 4702 | . . . 4 ⊢ (𝑋(𝐴‘𝑍)𝑌 → (𝐴‘𝑍) ≠ ∅) | |
2 | fvprc 6185 | . . . . 5 ⊢ (¬ 𝑍 ∈ V → (𝐴‘𝑍) = ∅) | |
3 | 2 | necon1ai 2821 | . . . 4 ⊢ ((𝐴‘𝑍) ≠ ∅ → 𝑍 ∈ V) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑋(𝐴‘𝑍)𝑌 → 𝑍 ∈ V) |
5 | brfvopabrbr.1 | . . . . 5 ⊢ (𝐴‘𝑍) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐵‘𝑍)𝑦 ∧ 𝜑)} | |
6 | 5 | relopabi 5245 | . . . 4 ⊢ Rel (𝐴‘𝑍) |
7 | 6 | brrelexi 5158 | . . 3 ⊢ (𝑋(𝐴‘𝑍)𝑌 → 𝑋 ∈ V) |
8 | 6 | brrelex2i 5159 | . . 3 ⊢ (𝑋(𝐴‘𝑍)𝑌 → 𝑌 ∈ V) |
9 | 4, 7, 8 | 3jca 1242 | . 2 ⊢ (𝑋(𝐴‘𝑍)𝑌 → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V)) |
10 | brne0 4702 | . . . . 5 ⊢ (𝑋(𝐵‘𝑍)𝑌 → (𝐵‘𝑍) ≠ ∅) | |
11 | fvprc 6185 | . . . . . 6 ⊢ (¬ 𝑍 ∈ V → (𝐵‘𝑍) = ∅) | |
12 | 11 | necon1ai 2821 | . . . . 5 ⊢ ((𝐵‘𝑍) ≠ ∅ → 𝑍 ∈ V) |
13 | 10, 12 | syl 17 | . . . 4 ⊢ (𝑋(𝐵‘𝑍)𝑌 → 𝑍 ∈ V) |
14 | brfvopabrbr.3 | . . . . 5 ⊢ Rel (𝐵‘𝑍) | |
15 | 14 | brrelexi 5158 | . . . 4 ⊢ (𝑋(𝐵‘𝑍)𝑌 → 𝑋 ∈ V) |
16 | 14 | brrelex2i 5159 | . . . 4 ⊢ (𝑋(𝐵‘𝑍)𝑌 → 𝑌 ∈ V) |
17 | 13, 15, 16 | 3jca 1242 | . . 3 ⊢ (𝑋(𝐵‘𝑍)𝑌 → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V)) |
18 | 17 | adantr 481 | . 2 ⊢ ((𝑋(𝐵‘𝑍)𝑌 ∧ 𝜓) → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V)) |
19 | 5 | a1i 11 | . . 3 ⊢ (𝑍 ∈ V → (𝐴‘𝑍) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐵‘𝑍)𝑦 ∧ 𝜑)}) |
20 | brfvopabrbr.2 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) | |
21 | 19, 20 | rbropap 5016 | . 2 ⊢ ((𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋(𝐴‘𝑍)𝑌 ↔ (𝑋(𝐵‘𝑍)𝑌 ∧ 𝜓))) |
22 | 9, 18, 21 | pm5.21nii 368 | 1 ⊢ (𝑋(𝐴‘𝑍)𝑌 ↔ (𝑋(𝐵‘𝑍)𝑌 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 Vcvv 3200 ∅c0 3915 class class class wbr 4653 {copab 4712 Rel wrel 5119 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-iota 5851 df-fv 5896 |
This theorem is referenced by: istrl 26593 ispth 26619 isspth 26620 isclwlk 26669 iscrct 26685 iscycl 26686 iseupth 27061 |
Copyright terms: Public domain | W3C validator |