![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brimage | Structured version Visualization version GIF version |
Description: Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brimage.1 | ⊢ 𝐴 ∈ V |
brimage.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brimage | ⊢ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brimage.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | brimage.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | df-image 31971 | . 2 ⊢ Image𝑅 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝑅) ⊗ V))) | |
4 | brxp 5147 | . . 3 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
5 | 1, 2, 4 | mpbir2an 955 | . 2 ⊢ 𝐴(V × V)𝐵 |
6 | vex 3203 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | vex 3203 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | 6, 7 | brcnv 5305 | . . . 4 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
9 | 8 | rexbii 3041 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 𝑥◡𝑅𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑦𝑅𝑥) |
10 | 6, 1 | coep 31641 | . . 3 ⊢ (𝑥( E ∘ ◡𝑅)𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥◡𝑅𝑦) |
11 | 6 | elima 5471 | . . 3 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑦𝑅𝑥) |
12 | 9, 10, 11 | 3bitr4ri 293 | . 2 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ 𝑥( E ∘ ◡𝑅)𝐴) |
13 | 1, 2, 3, 5, 12 | brtxpsd3 32003 | 1 ⊢ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 Vcvv 3200 class class class wbr 4653 E cep 5028 × cxp 5112 ◡ccnv 5113 “ cima 5117 ∘ ccom 5118 Imagecimage 31947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-symdif 3844 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-eprel 5029 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-1st 7168 df-2nd 7169 df-txp 31961 df-image 31971 |
This theorem is referenced by: brimageg 32034 funimage 32035 fnimage 32036 imageval 32037 brdomain 32040 brrange 32041 brimg 32044 funpartlem 32049 imagesset 32060 |
Copyright terms: Public domain | W3C validator |