![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brpprod3a | Structured version Visualization version GIF version |
Description: Condition for parallel product when the last argument is not an ordered pair. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brpprod3.1 | ⊢ 𝑋 ∈ V |
brpprod3.2 | ⊢ 𝑌 ∈ V |
brpprod3.3 | ⊢ 𝑍 ∈ V |
Ref | Expression |
---|---|
brpprod3a | ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pprodss4v 31991 | . . . . . . 7 ⊢ pprod(𝑅, 𝑆) ⊆ ((V × V) × (V × V)) | |
2 | 1 | brel 5168 | . . . . . 6 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 → (〈𝑋, 𝑌〉 ∈ (V × V) ∧ 𝑍 ∈ (V × V))) |
3 | 2 | simprd 479 | . . . . 5 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 → 𝑍 ∈ (V × V)) |
4 | elvv 5177 | . . . . 5 ⊢ (𝑍 ∈ (V × V) ↔ ∃𝑧∃𝑤 𝑍 = 〈𝑧, 𝑤〉) | |
5 | 3, 4 | sylib 208 | . . . 4 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 → ∃𝑧∃𝑤 𝑍 = 〈𝑧, 𝑤〉) |
6 | 5 | pm4.71ri 665 | . . 3 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ (∃𝑧∃𝑤 𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍)) |
7 | 19.41vv 1915 | . . 3 ⊢ (∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍) ↔ (∃𝑧∃𝑤 𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍)) | |
8 | 6, 7 | bitr4i 267 | . 2 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍)) |
9 | breq2 4657 | . . . 4 ⊢ (𝑍 = 〈𝑧, 𝑤〉 → (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉)) | |
10 | 9 | pm5.32i 669 | . . 3 ⊢ ((𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍) ↔ (𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉)) |
11 | 10 | 2exbii 1775 | . 2 ⊢ (∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍) ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉)) |
12 | brpprod3.1 | . . . . . 6 ⊢ 𝑋 ∈ V | |
13 | brpprod3.2 | . . . . . 6 ⊢ 𝑌 ∈ V | |
14 | vex 3203 | . . . . . 6 ⊢ 𝑧 ∈ V | |
15 | vex 3203 | . . . . . 6 ⊢ 𝑤 ∈ V | |
16 | 12, 13, 14, 15 | brpprod 31992 | . . . . 5 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉 ↔ (𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
17 | 16 | anbi2i 730 | . . . 4 ⊢ ((𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉) ↔ (𝑍 = 〈𝑧, 𝑤〉 ∧ (𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤))) |
18 | 3anass 1042 | . . . 4 ⊢ ((𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤) ↔ (𝑍 = 〈𝑧, 𝑤〉 ∧ (𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤))) | |
19 | 17, 18 | bitr4i 267 | . . 3 ⊢ ((𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉) ↔ (𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
20 | 19 | 2exbii 1775 | . 2 ⊢ (∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉) ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
21 | 8, 11, 20 | 3bitri 286 | 1 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∃wex 1704 ∈ wcel 1990 Vcvv 3200 〈cop 4183 class class class wbr 4653 × cxp 5112 pprodcpprod 31938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-1st 7168 df-2nd 7169 df-txp 31961 df-pprod 31962 |
This theorem is referenced by: brpprod3b 31994 brapply 32045 dfrdg4 32058 |
Copyright terms: Public domain | W3C validator |