Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod3a Structured version   Visualization version   Unicode version

Theorem brpprod3a 31993
Description: Condition for parallel product when the last argument is not an ordered pair. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brpprod3.1  |-  X  e. 
_V
brpprod3.2  |-  Y  e. 
_V
brpprod3.3  |-  Z  e. 
_V
Assertion
Ref Expression
brpprod3a  |-  ( <. X ,  Y >.pprod ( R ,  S ) Z  <->  E. z E. w
( Z  =  <. z ,  w >.  /\  X R z  /\  Y S w ) )
Distinct variable groups:    z, w, R    w, S, z    w, X, z    w, Y, z   
w, Z, z

Proof of Theorem brpprod3a
StepHypRef Expression
1 pprodss4v 31991 . . . . . . 7  |- pprod ( R ,  S )  C_  ( ( _V  X.  _V )  X.  ( _V  X.  _V ) )
21brel 5168 . . . . . 6  |-  ( <. X ,  Y >.pprod ( R ,  S ) Z  ->  ( <. X ,  Y >.  e.  ( _V  X.  _V )  /\  Z  e.  ( _V  X.  _V ) ) )
32simprd 479 . . . . 5  |-  ( <. X ,  Y >.pprod ( R ,  S ) Z  ->  Z  e.  ( _V  X.  _V )
)
4 elvv 5177 . . . . 5  |-  ( Z  e.  ( _V  X.  _V )  <->  E. z E. w  Z  =  <. z ,  w >. )
53, 4sylib 208 . . . 4  |-  ( <. X ,  Y >.pprod ( R ,  S ) Z  ->  E. z E. w  Z  =  <. z ,  w >. )
65pm4.71ri 665 . . 3  |-  ( <. X ,  Y >.pprod ( R ,  S ) Z  <->  ( E. z E. w  Z  =  <. z ,  w >.  /\ 
<. X ,  Y >.pprod ( R ,  S ) Z ) )
7 19.41vv 1915 . . 3  |-  ( E. z E. w ( Z  =  <. z ,  w >.  /\  <. X ,  Y >.pprod ( R ,  S ) Z )  <-> 
( E. z E. w  Z  =  <. z ,  w >.  /\  <. X ,  Y >.pprod ( R ,  S ) Z ) )
86, 7bitr4i 267 . 2  |-  ( <. X ,  Y >.pprod ( R ,  S ) Z  <->  E. z E. w
( Z  =  <. z ,  w >.  /\  <. X ,  Y >.pprod ( R ,  S ) Z ) )
9 breq2 4657 . . . 4  |-  ( Z  =  <. z ,  w >.  ->  ( <. X ,  Y >.pprod ( R ,  S ) Z  <->  <. X ,  Y >.pprod ( R ,  S ) <. z ,  w >. ) )
109pm5.32i 669 . . 3  |-  ( ( Z  =  <. z ,  w >.  /\  <. X ,  Y >.pprod ( R ,  S ) Z )  <-> 
( Z  =  <. z ,  w >.  /\  <. X ,  Y >.pprod ( R ,  S ) <.
z ,  w >. ) )
11102exbii 1775 . 2  |-  ( E. z E. w ( Z  =  <. z ,  w >.  /\  <. X ,  Y >.pprod ( R ,  S ) Z )  <->  E. z E. w ( Z  =  <. z ,  w >.  /\  <. X ,  Y >.pprod ( R ,  S ) <. z ,  w >. ) )
12 brpprod3.1 . . . . . 6  |-  X  e. 
_V
13 brpprod3.2 . . . . . 6  |-  Y  e. 
_V
14 vex 3203 . . . . . 6  |-  z  e. 
_V
15 vex 3203 . . . . . 6  |-  w  e. 
_V
1612, 13, 14, 15brpprod 31992 . . . . 5  |-  ( <. X ,  Y >.pprod ( R ,  S )
<. z ,  w >.  <->  ( X R z  /\  Y S w ) )
1716anbi2i 730 . . . 4  |-  ( ( Z  =  <. z ,  w >.  /\  <. X ,  Y >.pprod ( R ,  S ) <. z ,  w >. )  <->  ( Z  =  <. z ,  w >.  /\  ( X R z  /\  Y S w ) ) )
18 3anass 1042 . . . 4  |-  ( ( Z  =  <. z ,  w >.  /\  X R z  /\  Y S w )  <->  ( Z  =  <. z ,  w >.  /\  ( X R z  /\  Y S w ) ) )
1917, 18bitr4i 267 . . 3  |-  ( ( Z  =  <. z ,  w >.  /\  <. X ,  Y >.pprod ( R ,  S ) <. z ,  w >. )  <->  ( Z  =  <. z ,  w >.  /\  X R z  /\  Y S w ) )
20192exbii 1775 . 2  |-  ( E. z E. w ( Z  =  <. z ,  w >.  /\  <. X ,  Y >.pprod ( R ,  S ) <. z ,  w >. )  <->  E. z E. w ( Z  = 
<. z ,  w >.  /\  X R z  /\  Y S w ) )
218, 11, 203bitri 286 1  |-  ( <. X ,  Y >.pprod ( R ,  S ) Z  <->  E. z E. w
( Z  =  <. z ,  w >.  /\  X R z  /\  Y S w ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200   <.cop 4183   class class class wbr 4653    X. cxp 5112  pprodcpprod 31938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169  df-txp 31961  df-pprod 31962
This theorem is referenced by:  brpprod3b  31994  brapply  32045  dfrdg4  32058
  Copyright terms: Public domain W3C validator