Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carageneld Structured version   Visualization version   GIF version

Theorem carageneld 40716
Description: Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
carageneld.o (𝜑𝑂 ∈ OutMeas)
carageneld.x 𝑋 = dom 𝑂
carageneld.s 𝑆 = (CaraGen‘𝑂)
carageneld.e (𝜑𝐸 ∈ 𝒫 𝑋)
carageneld.a ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
Assertion
Ref Expression
carageneld (𝜑𝐸𝑆)
Distinct variable groups:   𝐸,𝑎   𝑂,𝑎   𝜑,𝑎
Allowed substitution hints:   𝑆(𝑎)   𝑋(𝑎)

Proof of Theorem carageneld
StepHypRef Expression
1 carageneld.e . . . 4 (𝜑𝐸 ∈ 𝒫 𝑋)
2 carageneld.x . . . . 5 𝑋 = dom 𝑂
32pweqi 4162 . . . 4 𝒫 𝑋 = 𝒫 dom 𝑂
41, 3syl6eleq 2711 . . 3 (𝜑𝐸 ∈ 𝒫 dom 𝑂)
5 simpl 473 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝜑)
63eleq2i 2693 . . . . . . . 8 (𝑎 ∈ 𝒫 𝑋𝑎 ∈ 𝒫 dom 𝑂)
76bicomi 214 . . . . . . 7 (𝑎 ∈ 𝒫 dom 𝑂𝑎 ∈ 𝒫 𝑋)
87biimpi 206 . . . . . 6 (𝑎 ∈ 𝒫 dom 𝑂𝑎 ∈ 𝒫 𝑋)
98adantl 482 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 ∈ 𝒫 𝑋)
10 carageneld.a . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
115, 9, 10syl2anc 693 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
1211ralrimiva 2966 . . 3 (𝜑 → ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
134, 12jca 554 . 2 (𝜑 → (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
14 carageneld.o . . 3 (𝜑𝑂 ∈ OutMeas)
15 carageneld.s . . 3 𝑆 = (CaraGen‘𝑂)
1614, 15caragenel 40709 . 2 (𝜑 → (𝐸𝑆 ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
1713, 16mpbird 247 1 (𝜑𝐸𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  cdif 3571  cin 3573  𝒫 cpw 4158   cuni 4436  dom cdm 5114  cfv 5888  (class class class)co 6650   +𝑒 cxad 11944  OutMeascome 40703  CaraGenccaragen 40705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-caragen 40706
This theorem is referenced by:  caragen0  40720  caragenunidm  40722  caragenuncl  40727  caragendifcl  40728  carageniuncl  40737  caragenel2d  40746
  Copyright terms: Public domain W3C validator