![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenuncl | Structured version Visualization version GIF version |
Description: The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenuncl.1 | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragenuncl.2 | ⊢ 𝑆 = (CaraGen‘𝑂) |
caragenuncl.3 | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
caragenuncl.4 | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
Ref | Expression |
---|---|
caragenuncl | ⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragenuncl.1 | . 2 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | eqid 2622 | . 2 ⊢ ∪ dom 𝑂 = ∪ dom 𝑂 | |
3 | caragenuncl.2 | . 2 ⊢ 𝑆 = (CaraGen‘𝑂) | |
4 | caragenuncl.3 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑆) | |
5 | 1, 3, 4, 2 | caragenelss 40715 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ ∪ dom 𝑂) |
6 | caragenuncl.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
7 | 1, 3, 6, 2 | caragenelss 40715 | . . . 4 ⊢ (𝜑 → 𝐹 ⊆ ∪ dom 𝑂) |
8 | 5, 7 | unssd 3789 | . . 3 ⊢ (𝜑 → (𝐸 ∪ 𝐹) ⊆ ∪ dom 𝑂) |
9 | 1, 2 | unidmex 39217 | . . . . 5 ⊢ (𝜑 → ∪ dom 𝑂 ∈ V) |
10 | ssexg 4804 | . . . . 5 ⊢ (((𝐸 ∪ 𝐹) ⊆ ∪ dom 𝑂 ∧ ∪ dom 𝑂 ∈ V) → (𝐸 ∪ 𝐹) ∈ V) | |
11 | 8, 9, 10 | syl2anc 693 | . . . 4 ⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ V) |
12 | elpwg 4166 | . . . 4 ⊢ ((𝐸 ∪ 𝐹) ∈ V → ((𝐸 ∪ 𝐹) ∈ 𝒫 ∪ dom 𝑂 ↔ (𝐸 ∪ 𝐹) ⊆ ∪ dom 𝑂)) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐸 ∪ 𝐹) ∈ 𝒫 ∪ dom 𝑂 ↔ (𝐸 ∪ 𝐹) ⊆ ∪ dom 𝑂)) |
14 | 8, 13 | mpbird 247 | . 2 ⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ 𝒫 ∪ dom 𝑂) |
15 | 1 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑂 ∈ OutMeas) |
16 | 4 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝐸 ∈ 𝑆) |
17 | 6 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝐹 ∈ 𝑆) |
18 | elpwi 4168 | . . . 4 ⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 → 𝑎 ⊆ ∪ dom 𝑂) | |
19 | 18 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑎 ⊆ ∪ dom 𝑂) |
20 | 15, 3, 16, 17, 2, 19 | caragenuncllem 40726 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ (𝐸 ∪ 𝐹))) +𝑒 (𝑂‘(𝑎 ∖ (𝐸 ∪ 𝐹)))) = (𝑂‘𝑎)) |
21 | 1, 2, 3, 14, 20 | carageneld 40716 | 1 ⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∪ cun 3572 ⊆ wss 3574 𝒫 cpw 4158 ∪ cuni 4436 dom cdm 5114 ‘cfv 5888 OutMeascome 40703 CaraGenccaragen 40705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-addass 10001 ax-i2m1 10004 ax-1ne0 10005 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-xadd 11947 df-icc 12182 df-ome 40704 df-caragen 40706 |
This theorem is referenced by: caragenfiiuncl 40729 |
Copyright terms: Public domain | W3C validator |