![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenunidm | Structured version Visualization version GIF version |
Description: The base set of an outer measure belongs to the sigma-algebra generated by the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenunidm.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragenunidm.x | ⊢ 𝑋 = ∪ dom 𝑂 |
caragenunidm.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
Ref | Expression |
---|---|
caragenunidm | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragenunidm.o | . 2 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | caragenunidm.x | . 2 ⊢ 𝑋 = ∪ dom 𝑂 | |
3 | caragenunidm.s | . 2 ⊢ 𝑆 = (CaraGen‘𝑂) | |
4 | dmexg 7097 | . . . . 5 ⊢ (𝑂 ∈ OutMeas → dom 𝑂 ∈ V) | |
5 | uniexg 6955 | . . . . 5 ⊢ (dom 𝑂 ∈ V → ∪ dom 𝑂 ∈ V) | |
6 | 1, 4, 5 | 3syl 18 | . . . 4 ⊢ (𝜑 → ∪ dom 𝑂 ∈ V) |
7 | 2, 6 | syl5eqel 2705 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) |
8 | pwidg 4173 | . . 3 ⊢ (𝑋 ∈ V → 𝑋 ∈ 𝒫 𝑋) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑋) |
10 | elpwi 4168 | . . . . . . 7 ⊢ (𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋) | |
11 | df-ss 3588 | . . . . . . . 8 ⊢ (𝑎 ⊆ 𝑋 ↔ (𝑎 ∩ 𝑋) = 𝑎) | |
12 | 11 | biimpi 206 | . . . . . . 7 ⊢ (𝑎 ⊆ 𝑋 → (𝑎 ∩ 𝑋) = 𝑎) |
13 | 10, 12 | syl 17 | . . . . . 6 ⊢ (𝑎 ∈ 𝒫 𝑋 → (𝑎 ∩ 𝑋) = 𝑎) |
14 | 13 | fveq2d 6195 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 𝑋 → (𝑂‘(𝑎 ∩ 𝑋)) = (𝑂‘𝑎)) |
15 | 14 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎 ∩ 𝑋)) = (𝑂‘𝑎)) |
16 | ssdif0 3942 | . . . . . . . 8 ⊢ (𝑎 ⊆ 𝑋 ↔ (𝑎 ∖ 𝑋) = ∅) | |
17 | 10, 16 | sylib 208 | . . . . . . 7 ⊢ (𝑎 ∈ 𝒫 𝑋 → (𝑎 ∖ 𝑋) = ∅) |
18 | 17 | fveq2d 6195 | . . . . . 6 ⊢ (𝑎 ∈ 𝒫 𝑋 → (𝑂‘(𝑎 ∖ 𝑋)) = (𝑂‘∅)) |
19 | 18 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎 ∖ 𝑋)) = (𝑂‘∅)) |
20 | 1 | ome0 40711 | . . . . . 6 ⊢ (𝜑 → (𝑂‘∅) = 0) |
21 | 20 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘∅) = 0) |
22 | 19, 21 | eqtrd 2656 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎 ∖ 𝑋)) = 0) |
23 | 15, 22 | oveq12d 6668 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝑋)) +𝑒 (𝑂‘(𝑎 ∖ 𝑋))) = ((𝑂‘𝑎) +𝑒 0)) |
24 | iccssxr 12256 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
25 | 1 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑂 ∈ OutMeas) |
26 | 10 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑎 ⊆ 𝑋) |
27 | 25, 2, 26 | omecl 40717 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘𝑎) ∈ (0[,]+∞)) |
28 | 24, 27 | sseldi 3601 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘𝑎) ∈ ℝ*) |
29 | 28 | xaddid1d 12074 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘𝑎) +𝑒 0) = (𝑂‘𝑎)) |
30 | eqidd 2623 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘𝑎) = (𝑂‘𝑎)) | |
31 | 23, 29, 30 | 3eqtrd 2660 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝑋)) +𝑒 (𝑂‘(𝑎 ∖ 𝑋))) = (𝑂‘𝑎)) |
32 | 1, 2, 3, 9, 31 | carageneld 40716 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∖ cdif 3571 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 𝒫 cpw 4158 ∪ cuni 4436 dom cdm 5114 ‘cfv 5888 (class class class)co 6650 0cc0 9936 +∞cpnf 10071 ℝ*cxr 10073 +𝑒 cxad 11944 [,]cicc 12178 OutMeascome 40703 CaraGenccaragen 40705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-xadd 11947 df-icc 12182 df-ome 40704 df-caragen 40706 |
This theorem is referenced by: caragenuni 40725 rrnmbl 40828 |
Copyright terms: Public domain | W3C validator |