Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carageneld Structured version   Visualization version   Unicode version

Theorem carageneld 40716
Description: Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
carageneld.o  |-  ( ph  ->  O  e. OutMeas )
carageneld.x  |-  X  = 
U. dom  O
carageneld.s  |-  S  =  (CaraGen `  O )
carageneld.e  |-  ( ph  ->  E  e.  ~P X
)
carageneld.a  |-  ( (
ph  /\  a  e.  ~P X )  ->  (
( O `  (
a  i^i  E )
) +e ( O `  ( a 
\  E ) ) )  =  ( O `
 a ) )
Assertion
Ref Expression
carageneld  |-  ( ph  ->  E  e.  S )
Distinct variable groups:    E, a    O, a    ph, a
Allowed substitution hints:    S( a)    X( a)

Proof of Theorem carageneld
StepHypRef Expression
1 carageneld.e . . . 4  |-  ( ph  ->  E  e.  ~P X
)
2 carageneld.x . . . . 5  |-  X  = 
U. dom  O
32pweqi 4162 . . . 4  |-  ~P X  =  ~P U. dom  O
41, 3syl6eleq 2711 . . 3  |-  ( ph  ->  E  e.  ~P U. dom  O )
5 simpl 473 . . . . 5  |-  ( (
ph  /\  a  e.  ~P U. dom  O )  ->  ph )
63eleq2i 2693 . . . . . . . 8  |-  ( a  e.  ~P X  <->  a  e.  ~P U. dom  O )
76bicomi 214 . . . . . . 7  |-  ( a  e.  ~P U. dom  O  <-> 
a  e.  ~P X
)
87biimpi 206 . . . . . 6  |-  ( a  e.  ~P U. dom  O  ->  a  e.  ~P X )
98adantl 482 . . . . 5  |-  ( (
ph  /\  a  e.  ~P U. dom  O )  ->  a  e.  ~P X )
10 carageneld.a . . . . 5  |-  ( (
ph  /\  a  e.  ~P X )  ->  (
( O `  (
a  i^i  E )
) +e ( O `  ( a 
\  E ) ) )  =  ( O `
 a ) )
115, 9, 10syl2anc 693 . . . 4  |-  ( (
ph  /\  a  e.  ~P U. dom  O )  ->  ( ( O `
 ( a  i^i 
E ) ) +e ( O `  ( a  \  E
) ) )  =  ( O `  a
) )
1211ralrimiva 2966 . . 3  |-  ( ph  ->  A. a  e.  ~P  U.
dom  O ( ( O `  ( a  i^i  E ) ) +e ( O `
 ( a  \  E ) ) )  =  ( O `  a ) )
134, 12jca 554 . 2  |-  ( ph  ->  ( E  e.  ~P U.
dom  O  /\  A. a  e.  ~P  U. dom  O
( ( O `  ( a  i^i  E
) ) +e
( O `  (
a  \  E )
) )  =  ( O `  a ) ) )
14 carageneld.o . . 3  |-  ( ph  ->  O  e. OutMeas )
15 carageneld.s . . 3  |-  S  =  (CaraGen `  O )
1614, 15caragenel 40709 . 2  |-  ( ph  ->  ( E  e.  S  <->  ( E  e.  ~P U. dom  O  /\  A. a  e.  ~P  U. dom  O
( ( O `  ( a  i^i  E
) ) +e
( O `  (
a  \  E )
) )  =  ( O `  a ) ) ) )
1713, 16mpbird 247 1  |-  ( ph  ->  E  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571    i^i cin 3573   ~Pcpw 4158   U.cuni 4436   dom cdm 5114   ` cfv 5888  (class class class)co 6650   +ecxad 11944  OutMeascome 40703  CaraGenccaragen 40705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-caragen 40706
This theorem is referenced by:  caragen0  40720  caragenunidm  40722  caragenuncl  40727  caragendifcl  40728  carageniuncl  40737  caragenel2d  40746
  Copyright terms: Public domain W3C validator