![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pweqi | Structured version Visualization version GIF version |
Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
Ref | Expression |
---|---|
pweqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
pweqi | ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | pweq 4161 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 𝒫 cpw 4158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-in 3581 df-ss 3588 df-pw 4160 |
This theorem is referenced by: pwfi 8261 rankxplim 8742 pwcda1 9016 fin23lem17 9160 mnfnre 10082 qtopres 21501 hmphdis 21599 ust0 22023 umgrpredgv 26035 issubgr 26163 uhgrissubgr 26167 cusgredg 26320 cffldtocusgr 26343 konigsbergiedgw 27108 konigsbergiedgwOLD 27109 shsspwh 28103 circtopn 29904 rankeq1o 32278 onsucsuccmpi 32442 elrfi 37257 islmodfg 37639 clsk1indlem4 38342 clsk1indlem1 38343 clsk1independent 38344 omef 40710 caragensplit 40714 caragenelss 40715 carageneld 40716 omeunile 40719 caragensspw 40723 0ome 40743 isomennd 40745 ovn02 40782 lcoop 42200 lincvalsc0 42210 linc0scn0 42212 lincdifsn 42213 linc1 42214 lspsslco 42226 lincresunit3lem2 42269 lincresunit3 42270 |
Copyright terms: Public domain | W3C validator |