![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragensplit | Structured version Visualization version GIF version |
Description: If 𝐸 is in the set generated by the Caratheodory's method, then it splits any set 𝐴 in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set 𝐴. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragensplit.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragensplit.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
caragensplit.x | ⊢ 𝑋 = ∪ dom 𝑂 |
caragensplit.e | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
caragensplit.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
Ref | Expression |
---|---|
caragensplit | ⊢ (𝜑 → ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragensplit.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
2 | caragensplit.o | . . . . . . 7 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
3 | caragensplit.x | . . . . . . 7 ⊢ 𝑋 = ∪ dom 𝑂 | |
4 | 2, 3 | unidmex 39217 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ V) |
5 | ssexg 4804 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ V) → 𝐴 ∈ V) | |
6 | 1, 4, 5 | syl2anc 693 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
7 | elpwg 4166 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
9 | 1, 8 | mpbird 247 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
10 | 3 | pweqi 4162 | . . 3 ⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
11 | 9, 10 | syl6eleq 2711 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 ∪ dom 𝑂) |
12 | caragensplit.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑆) | |
13 | caragensplit.s | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
14 | 2, 13 | caragenel 40709 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
15 | 12, 14 | mpbid 222 | . . 3 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
16 | 15 | simprd 479 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
17 | ineq1 3807 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ∩ 𝐸) = (𝐴 ∩ 𝐸)) | |
18 | 17 | fveq2d 6195 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑂‘(𝑎 ∩ 𝐸)) = (𝑂‘(𝐴 ∩ 𝐸))) |
19 | difeq1 3721 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ∖ 𝐸) = (𝐴 ∖ 𝐸)) | |
20 | 19 | fveq2d 6195 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑂‘(𝑎 ∖ 𝐸)) = (𝑂‘(𝐴 ∖ 𝐸))) |
21 | 18, 20 | oveq12d 6668 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸)))) |
22 | fveq2 6191 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑂‘𝑎) = (𝑂‘𝐴)) | |
23 | 21, 22 | eqeq12d 2637 | . . 3 ⊢ (𝑎 = 𝐴 → (((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎) ↔ ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴))) |
24 | 23 | rspcva 3307 | . 2 ⊢ ((𝐴 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) → ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴)) |
25 | 11, 16, 24 | syl2anc 693 | 1 ⊢ (𝜑 → ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ∖ cdif 3571 ∩ cin 3573 ⊆ wss 3574 𝒫 cpw 4158 ∪ cuni 4436 dom cdm 5114 ‘cfv 5888 (class class class)co 6650 +𝑒 cxad 11944 OutMeascome 40703 CaraGenccaragen 40705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-caragen 40706 |
This theorem is referenced by: caragenuncllem 40726 carageniuncllem1 40735 carageniuncllem2 40736 caratheodorylem1 40740 |
Copyright terms: Public domain | W3C validator |