| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > caragensplit | Structured version Visualization version Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| caragensplit.o |
|
| caragensplit.s |
|
| caragensplit.x |
|
| caragensplit.e |
|
| caragensplit.a |
|
| Ref | Expression |
|---|---|
| caragensplit |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caragensplit.a |
. . . 4
| |
| 2 | caragensplit.o |
. . . . . . 7
| |
| 3 | caragensplit.x |
. . . . . . 7
| |
| 4 | 2, 3 | unidmex 39217 |
. . . . . 6
|
| 5 | ssexg 4804 |
. . . . . 6
| |
| 6 | 1, 4, 5 | syl2anc 693 |
. . . . 5
|
| 7 | elpwg 4166 |
. . . . 5
| |
| 8 | 6, 7 | syl 17 |
. . . 4
|
| 9 | 1, 8 | mpbird 247 |
. . 3
|
| 10 | 3 | pweqi 4162 |
. . 3
|
| 11 | 9, 10 | syl6eleq 2711 |
. 2
|
| 12 | caragensplit.e |
. . . 4
| |
| 13 | caragensplit.s |
. . . . 5
| |
| 14 | 2, 13 | caragenel 40709 |
. . . 4
|
| 15 | 12, 14 | mpbid 222 |
. . 3
|
| 16 | 15 | simprd 479 |
. 2
|
| 17 | ineq1 3807 |
. . . . . 6
| |
| 18 | 17 | fveq2d 6195 |
. . . . 5
|
| 19 | difeq1 3721 |
. . . . . 6
| |
| 20 | 19 | fveq2d 6195 |
. . . . 5
|
| 21 | 18, 20 | oveq12d 6668 |
. . . 4
|
| 22 | fveq2 6191 |
. . . 4
| |
| 23 | 21, 22 | eqeq12d 2637 |
. . 3
|
| 24 | 23 | rspcva 3307 |
. 2
|
| 25 | 11, 16, 24 | syl2anc 693 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-caragen 40706 |
| This theorem is referenced by: caragenuncllem 40726 carageniuncllem1 40735 carageniuncllem2 40736 caratheodorylem1 40740 |
| Copyright terms: Public domain | W3C validator |