Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragensspw Structured version   Visualization version   Unicode version

Theorem caragensspw 40723
Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the power set of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragensspw.o  |-  ( ph  ->  O  e. OutMeas )
caragensspw.x  |-  X  = 
U. dom  O
caragensspw.s  |-  S  =  (CaraGen `  O )
Assertion
Ref Expression
caragensspw  |-  ( ph  ->  S  C_  ~P X
)

Proof of Theorem caragensspw
StepHypRef Expression
1 caragensspw.o . . . 4  |-  ( ph  ->  O  e. OutMeas )
2 caragensspw.s . . . . 5  |-  S  =  (CaraGen `  O )
32caragenss 40718 . . . 4  |-  ( O  e. OutMeas  ->  S  C_  dom  O )
41, 3syl 17 . . 3  |-  ( ph  ->  S  C_  dom  O )
5 pwuni 4474 . . . 4  |-  dom  O  C_ 
~P U. dom  O
65a1i 11 . . 3  |-  ( ph  ->  dom  O  C_  ~P U.
dom  O )
74, 6sstrd 3613 . 2  |-  ( ph  ->  S  C_  ~P U. dom  O )
8 caragensspw.x . . . . 5  |-  X  = 
U. dom  O
98pweqi 4162 . . . 4  |-  ~P X  =  ~P U. dom  O
109eqcomi 2631 . . 3  |-  ~P U. dom  O  =  ~P X
1110a1i 11 . 2  |-  ( ph  ->  ~P U. dom  O  =  ~P X )
127, 11sseqtrd 3641 1  |-  ( ph  ->  S  C_  ~P X
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   dom cdm 5114   ` cfv 5888  OutMeascome 40703  CaraGenccaragen 40705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-ome 40704  df-caragen 40706
This theorem is referenced by:  caratheodorylem2  40741
  Copyright terms: Public domain W3C validator