Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0nex Structured version   Visualization version   GIF version

Theorem cdleme0nex 35577
Description: Part of proof of Lemma E in [Crawley] p. 114, 4th line of 4th paragraph. Whenever (in their terminology) p q/0 (i.e. the sublattice from 0 to p q) contains precisely three atoms, any atom not under w must equal either p or q. (In case of 3 atoms, one of them must be u - see cdleme0a 35498- which is under w, so the only 2 left not under w are p and q themselves.) Note that by cvlsupr2 34630, our (𝑃 𝑟) = (𝑄 𝑟) is a shorter way to express 𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄). Thus, the negated existential condition states there are no atoms different from p or q that are also not under w. (Contributed by NM, 12-Nov-2012.)
Hypotheses
Ref Expression
cdleme0nex.l = (le‘𝐾)
cdleme0nex.j = (join‘𝐾)
cdleme0nex.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cdleme0nex (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 = 𝑃𝑅 = 𝑄))
Distinct variable groups:   𝐴,𝑟   ,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑅,𝑟   𝑊,𝑟
Allowed substitution hint:   𝐾(𝑟)

Proof of Theorem cdleme0nex
StepHypRef Expression
1 simp3r 1090 . . . 4 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ 𝑅 𝑊)
2 simp12 1092 . . . 4 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑅 (𝑃 𝑄))
31, 2jca 554 . . 3 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (¬ 𝑅 𝑊𝑅 (𝑃 𝑄)))
4 simp3l 1089 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑅𝐴)
5 simp13 1093 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
6 ralnex 2992 . . . . . . 7 (∀𝑟𝐴 ¬ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
75, 6sylibr 224 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ∀𝑟𝐴 ¬ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
8 breq1 4656 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑟 𝑊𝑅 𝑊))
98notbid 308 . . . . . . . . 9 (𝑟 = 𝑅 → (¬ 𝑟 𝑊 ↔ ¬ 𝑅 𝑊))
10 oveq2 6658 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑃 𝑟) = (𝑃 𝑅))
11 oveq2 6658 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑄 𝑟) = (𝑄 𝑅))
1210, 11eqeq12d 2637 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
139, 12anbi12d 747 . . . . . . . 8 (𝑟 = 𝑅 → ((¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ (¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅))))
1413notbid 308 . . . . . . 7 (𝑟 = 𝑅 → (¬ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ ¬ (¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅))))
1514rspcva 3307 . . . . . 6 ((𝑅𝐴 ∧ ∀𝑟𝐴 ¬ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ¬ (¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)))
164, 7, 15syl2anc 693 . . . . 5 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ (¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)))
17 simp11 1091 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐾 ∈ HL)
18 hlcvl 34646 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
1917, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐾 ∈ CvLat)
20 simp21 1094 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑃𝐴)
21 simp22 1095 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑄𝐴)
22 simp23 1096 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑃𝑄)
23 cdleme0nex.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
24 cdleme0nex.l . . . . . . . 8 = (le‘𝐾)
25 cdleme0nex.j . . . . . . . 8 = (join‘𝐾)
2623, 24, 25cvlsupr2 34630 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
2719, 20, 21, 4, 22, 26syl131anc 1339 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
2827anbi2d 740 . . . . 5 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ↔ (¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))))
2916, 28mtbid 314 . . . 4 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ (¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
30 ianor 509 . . . . 5 (¬ ((𝑅𝑃𝑅𝑄) ∧ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))) ↔ (¬ (𝑅𝑃𝑅𝑄) ∨ ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
31 df-3an 1039 . . . . . . . 8 ((𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)) ↔ ((𝑅𝑃𝑅𝑄) ∧ 𝑅 (𝑃 𝑄)))
3231anbi2i 730 . . . . . . 7 ((¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) ↔ (¬ 𝑅 𝑊 ∧ ((𝑅𝑃𝑅𝑄) ∧ 𝑅 (𝑃 𝑄))))
33 an12 838 . . . . . . 7 ((¬ 𝑅 𝑊 ∧ ((𝑅𝑃𝑅𝑄) ∧ 𝑅 (𝑃 𝑄))) ↔ ((𝑅𝑃𝑅𝑄) ∧ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
3432, 33bitri 264 . . . . . 6 ((¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) ↔ ((𝑅𝑃𝑅𝑄) ∧ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
3534notbii 310 . . . . 5 (¬ (¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) ↔ ¬ ((𝑅𝑃𝑅𝑄) ∧ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
36 pm4.62 435 . . . . 5 (((𝑅𝑃𝑅𝑄) → ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))) ↔ (¬ (𝑅𝑃𝑅𝑄) ∨ ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
3730, 35, 363bitr4ri 293 . . . 4 (((𝑅𝑃𝑅𝑄) → ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))) ↔ ¬ (¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
3829, 37sylibr 224 . . 3 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝑅𝑃𝑅𝑄) → ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
393, 38mt2d 131 . 2 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ (𝑅𝑃𝑅𝑄))
40 neanior 2886 . . 3 ((𝑅𝑃𝑅𝑄) ↔ ¬ (𝑅 = 𝑃𝑅 = 𝑄))
4140con2bii 347 . 2 ((𝑅 = 𝑃𝑅 = 𝑄) ↔ ¬ (𝑅𝑃𝑅𝑄))
4239, 41sylibr 224 1 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 = 𝑃𝑅 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  lecple 15948  joincjn 16944  Atomscatm 34550  CvLatclc 34552  HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638
This theorem is referenced by:  cdleme18c  35580  cdleme18d  35582  cdlemg17b  35950  cdlemg17h  35956
  Copyright terms: Public domain W3C validator