| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme0nex | Structured version Visualization version Unicode version | ||
| Description: Part of proof of Lemma E
in [Crawley] p. 114, 4th line of 4th
paragraph.
Whenever (in their terminology) p |
| Ref | Expression |
|---|---|
| cdleme0nex.l |
|
| cdleme0nex.j |
|
| cdleme0nex.a |
|
| Ref | Expression |
|---|---|
| cdleme0nex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1090 |
. . . 4
| |
| 2 | simp12 1092 |
. . . 4
| |
| 3 | 1, 2 | jca 554 |
. . 3
|
| 4 | simp3l 1089 |
. . . . . 6
| |
| 5 | simp13 1093 |
. . . . . . 7
| |
| 6 | ralnex 2992 |
. . . . . . 7
| |
| 7 | 5, 6 | sylibr 224 |
. . . . . 6
|
| 8 | breq1 4656 |
. . . . . . . . . 10
| |
| 9 | 8 | notbid 308 |
. . . . . . . . 9
|
| 10 | oveq2 6658 |
. . . . . . . . . 10
| |
| 11 | oveq2 6658 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | eqeq12d 2637 |
. . . . . . . . 9
|
| 13 | 9, 12 | anbi12d 747 |
. . . . . . . 8
|
| 14 | 13 | notbid 308 |
. . . . . . 7
|
| 15 | 14 | rspcva 3307 |
. . . . . 6
|
| 16 | 4, 7, 15 | syl2anc 693 |
. . . . 5
|
| 17 | simp11 1091 |
. . . . . . . 8
| |
| 18 | hlcvl 34646 |
. . . . . . . 8
| |
| 19 | 17, 18 | syl 17 |
. . . . . . 7
|
| 20 | simp21 1094 |
. . . . . . 7
| |
| 21 | simp22 1095 |
. . . . . . 7
| |
| 22 | simp23 1096 |
. . . . . . 7
| |
| 23 | cdleme0nex.a |
. . . . . . . 8
| |
| 24 | cdleme0nex.l |
. . . . . . . 8
| |
| 25 | cdleme0nex.j |
. . . . . . . 8
| |
| 26 | 23, 24, 25 | cvlsupr2 34630 |
. . . . . . 7
|
| 27 | 19, 20, 21, 4, 22, 26 | syl131anc 1339 |
. . . . . 6
|
| 28 | 27 | anbi2d 740 |
. . . . 5
|
| 29 | 16, 28 | mtbid 314 |
. . . 4
|
| 30 | ianor 509 |
. . . . 5
| |
| 31 | df-3an 1039 |
. . . . . . . 8
| |
| 32 | 31 | anbi2i 730 |
. . . . . . 7
|
| 33 | an12 838 |
. . . . . . 7
| |
| 34 | 32, 33 | bitri 264 |
. . . . . 6
|
| 35 | 34 | notbii 310 |
. . . . 5
|
| 36 | pm4.62 435 |
. . . . 5
| |
| 37 | 30, 35, 36 | 3bitr4ri 293 |
. . . 4
|
| 38 | 29, 37 | sylibr 224 |
. . 3
|
| 39 | 3, 38 | mt2d 131 |
. 2
|
| 40 | neanior 2886 |
. . 3
| |
| 41 | 40 | con2bii 347 |
. 2
|
| 42 | 39, 41 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 |
| This theorem is referenced by: cdleme18c 35580 cdleme18d 35582 cdlemg17b 35950 cdlemg17h 35956 |
| Copyright terms: Public domain | W3C validator |