Proof of Theorem cdleme20k
| Step | Hyp | Ref
| Expression |
| 1 | | simp11 1091 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 2 | | simp12 1092 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ∈ 𝐴) |
| 3 | | simp13 1093 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑄 ∈ 𝐴) |
| 4 | | simp2r 1088 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
| 5 | | simp2l 1087 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) |
| 6 | | simp3r 1090 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ≤ (𝑃 ∨ 𝑄)) |
| 7 | | simp3l 1089 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
| 8 | | cdleme19.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 9 | | cdleme19.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 10 | | cdleme19.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
| 11 | | cdleme19.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 12 | | cdleme19.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 13 | | cdleme19.d |
. . . 4
⊢ 𝐷 = ((𝑅 ∨ 𝑆) ∧ 𝑊) |
| 14 | 8, 9, 10, 11, 12, 13 | cdlemednpq 35586 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝐷 ≤ (𝑃 ∨ 𝑄)) |
| 15 | 1, 2, 3, 4, 5, 6, 7, 14 | syl133anc 1349 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝐷 ≤ (𝑃 ∨ 𝑄)) |
| 16 | | simp11l 1172 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ HL) |
| 17 | | hllat 34650 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 18 | 16, 17 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ Lat) |
| 19 | | simp11r 1173 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑊 ∈ 𝐻) |
| 20 | | simp2ll 1128 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑆 ∈ 𝐴) |
| 21 | | cdleme19.u |
. . . . . . 7
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 22 | | cdleme19.f |
. . . . . . 7
⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
| 23 | | eqid 2622 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 24 | 8, 9, 10, 11, 12, 21, 22, 23 | cdleme1b 35513 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐹 ∈ (Base‘𝐾)) |
| 25 | 16, 19, 2, 3, 20, 24 | syl23anc 1333 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ∈ (Base‘𝐾)) |
| 26 | | simp2rl 1130 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ∈ 𝐴) |
| 27 | 8, 9, 10, 11, 12, 13, 23 | cdlemedb 35584 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐷 ∈ (Base‘𝐾)) |
| 28 | 16, 19, 26, 20, 27 | syl22anc 1327 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐷 ∈ (Base‘𝐾)) |
| 29 | 23, 8, 9 | latlej2 17061 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ 𝐷 ∈ (Base‘𝐾)) → 𝐷 ≤ (𝐹 ∨ 𝐷)) |
| 30 | 18, 25, 28, 29 | syl3anc 1326 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐷 ≤ (𝐹 ∨ 𝐷)) |
| 31 | | breq2 4657 |
. . . 4
⊢ ((𝐹 ∨ 𝐷) = (𝑃 ∨ 𝑄) → (𝐷 ≤ (𝐹 ∨ 𝐷) ↔ 𝐷 ≤ (𝑃 ∨ 𝑄))) |
| 32 | 30, 31 | syl5ibcom 235 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝐹 ∨ 𝐷) = (𝑃 ∨ 𝑄) → 𝐷 ≤ (𝑃 ∨ 𝑄))) |
| 33 | 32 | necon3bd 2808 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (¬ 𝐷 ≤ (𝑃 ∨ 𝑄) → (𝐹 ∨ 𝐷) ≠ (𝑃 ∨ 𝑄))) |
| 34 | 15, 33 | mpd 15 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝐹 ∨ 𝐷) ≠ (𝑃 ∨ 𝑄)) |