![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3bd | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2798 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
2 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
3 | 1, 2 | syl5bi 232 | . 2 ⊢ (𝜑 → (¬ 𝐴 ≠ 𝐵 → 𝜓)) |
4 | 3 | con1d 139 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1483 ≠ wne 2794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-ne 2795 |
This theorem is referenced by: necon2ad 2809 nelne1 2890 nelne2 2891 nssne1 3661 nssne2 3662 disjne 4022 nbrne1 4672 nbrne2 4673 peano5 7089 oeeui 7682 domdifsn 8043 ac6sfi 8204 inf3lem2 8526 cnfcom3lem 8600 dfac9 8958 fin23lem21 9161 dedekindle 10201 zneo 11460 modirr 12741 sqrmo 13992 pc2dvds 15583 pcadd 15593 oddprmdvds 15607 4sqlem11 15659 latnlej 17068 sylow2blem3 18037 irredn0 18703 irredn1 18706 lssneln0 18952 lspsnne2 19118 lspfixed 19128 lspindpi 19132 lsmcv 19141 lspsolv 19143 isnzr2 19263 coe1tmmul 19647 dfac14 21421 fbdmn0 21638 filufint 21724 flimfnfcls 21832 alexsubALTlem2 21852 evth 22758 cphsqrtcl2 22986 ovolicc2lem4 23288 lhop1lem 23776 lhop1 23777 lhop2 23778 lhop 23779 deg1add 23863 abelthlem2 24186 logcnlem2 24389 angpined 24557 asinneg 24613 dmgmaddn0 24749 lgsne0 25060 lgsqr 25076 lgsquadlem2 25106 lgsquadlem3 25107 axlowdimlem17 25838 spansncvi 28511 broutsideof2 32229 unblimceq0lem 32497 poimirlem28 33437 dvasin 33496 dvacos 33497 nninfnub 33547 dvrunz 33753 lsatcvatlem 34336 lkrlsp2 34390 opnlen0 34475 2llnne2N 34694 lnnat 34713 llnn0 34802 lplnn0N 34833 lplnllnneN 34842 llncvrlpln2 34843 llncvrlpln 34844 lvoln0N 34877 lplncvrlvol2 34901 lplncvrlvol 34902 dalempnes 34937 dalemqnet 34938 dalemcea 34946 dalem3 34950 cdlema1N 35077 cdlemb 35080 paddasslem5 35110 llnexchb2lem 35154 osumcllem4N 35245 pexmidlem1N 35256 lhp2lt 35287 lhp2atne 35320 lhp2at0ne 35322 4atexlemunv 35352 4atexlemex2 35357 trlne 35472 trlval4 35475 cdlemc4 35481 cdleme11dN 35549 cdleme11h 35553 cdlemednuN 35587 cdleme20j 35606 cdleme20k 35607 cdleme21at 35616 cdleme35f 35742 cdlemg11b 35930 dia2dimlem1 36353 dihmeetlem3N 36594 dihmeetlem15N 36610 dochsnnz 36739 dochexmidlem1 36749 dochexmidlem7 36755 mapdindp3 37011 pellexlem1 37393 dfac21 37636 pm13.14 38610 uzlidlring 41929 suppdm 42300 |
Copyright terms: Public domain | W3C validator |