Proof of Theorem cdlemg17dALTN
| Step | Hyp | Ref
| Expression |
| 1 | | simp3l 1089 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄)) |
| 2 | | simp11 1091 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → 𝐾 ∈ HL) |
| 3 | | simp12 1092 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → 𝑊 ∈ 𝐻) |
| 4 | | simp13 1093 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → 𝐺 ∈ 𝑇) |
| 5 | | cdlemg12.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
| 6 | | cdlemg12.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 7 | | cdlemg12.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 8 | | cdlemg12b.r |
. . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 9 | 5, 6, 7, 8 | trlle 35471 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐺) ≤ 𝑊) |
| 10 | 2, 3, 4, 9 | syl21anc 1325 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝑅‘𝐺) ≤ 𝑊) |
| 11 | | hllat 34650 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 12 | 2, 11 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → 𝐾 ∈ Lat) |
| 13 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 14 | 13, 6, 7, 8 | trlcl 35451 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐺) ∈ (Base‘𝐾)) |
| 15 | 2, 3, 4, 14 | syl21anc 1325 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝑅‘𝐺) ∈ (Base‘𝐾)) |
| 16 | | simp21l 1178 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → 𝑃 ∈ 𝐴) |
| 17 | | simp22 1095 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → 𝑄 ∈ 𝐴) |
| 18 | | cdlemg12.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
| 19 | | cdlemg12.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
| 20 | 13, 18, 19 | hlatjcl 34653 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 21 | 2, 16, 17, 20 | syl3anc 1326 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 22 | 13, 6 | lhpbase 35284 |
. . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 23 | 3, 22 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → 𝑊 ∈ (Base‘𝐾)) |
| 24 | | cdlemg12.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
| 25 | 13, 5, 24 | latlem12 17078 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ ((𝑅‘𝐺) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝑅‘𝐺) ≤ 𝑊) ↔ (𝑅‘𝐺) ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
| 26 | 12, 15, 21, 23, 25 | syl13anc 1328 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → (((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝑅‘𝐺) ≤ 𝑊) ↔ (𝑅‘𝐺) ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
| 27 | 1, 10, 26 | mpbi2and 956 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝑅‘𝐺) ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
| 28 | | hlatl 34647 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| 29 | 2, 28 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → 𝐾 ∈ AtLat) |
| 30 | | simp21 1094 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 31 | | simp3r 1090 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝐺‘𝑃) ≠ 𝑃) |
| 32 | 5, 19, 6, 7, 8 | trlat 35456 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺 ∈ 𝑇 ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝑅‘𝐺) ∈ 𝐴) |
| 33 | 2, 3, 30, 4, 31, 32 | syl212anc 1336 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝑅‘𝐺) ∈ 𝐴) |
| 34 | | simp23 1096 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → 𝑃 ≠ 𝑄) |
| 35 | 5, 18, 24, 19, 6 | lhpat 35329 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) |
| 36 | 2, 3, 30, 17, 34, 35 | syl212anc 1336 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) |
| 37 | 5, 19 | atcmp 34598 |
. . 3
⊢ ((𝐾 ∈ AtLat ∧ (𝑅‘𝐺) ∈ 𝐴 ∧ ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) → ((𝑅‘𝐺) ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊) ↔ (𝑅‘𝐺) = ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
| 38 | 29, 33, 36, 37 | syl3anc 1326 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → ((𝑅‘𝐺) ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊) ↔ (𝑅‘𝐺) = ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
| 39 | 27, 38 | mpbid 222 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝑅‘𝐺) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |