Proof of Theorem cdlemh1
| Step | Hyp | Ref
| Expression |
| 1 | | cdlemh.s |
. . 3
⊢ 𝑆 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
| 2 | 1 | oveq1i 6660 |
. 2
⊢ (𝑆 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) |
| 3 | | simp11l 1172 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐾 ∈ HL) |
| 4 | | simp11 1091 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 5 | | simp13 1093 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐺 ∈ 𝑇) |
| 6 | | simp12 1092 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐹 ∈ 𝑇) |
| 7 | | simp3r 1090 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘𝐹) ≠ (𝑅‘𝐺)) |
| 8 | 7 | necomd 2849 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘𝐺) ≠ (𝑅‘𝐹)) |
| 9 | | cdlemh.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
| 10 | | cdlemh.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
| 11 | | cdlemh.t |
. . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 12 | | cdlemh.r |
. . . . . 6
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 13 | 9, 10, 11, 12 | trlcocnvat 36012 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)) → (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐴) |
| 14 | 4, 5, 6, 8, 13 | syl121anc 1331 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐴) |
| 15 | | hllat 34650 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 16 | 3, 15 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐾 ∈ Lat) |
| 17 | | simp2l 1087 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝑃 ∈ 𝐴) |
| 18 | | cdlemh.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
| 19 | 18, 9 | atbase 34576 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
| 20 | 17, 19 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝑃 ∈ 𝐵) |
| 21 | 18, 10, 11, 12 | trlcl 35451 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐺) ∈ 𝐵) |
| 22 | 4, 5, 21 | syl2anc 693 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘𝐺) ∈ 𝐵) |
| 23 | | cdlemh.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
| 24 | 18, 23 | latjcl 17051 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ (𝑅‘𝐺) ∈ 𝐵) → (𝑃 ∨ (𝑅‘𝐺)) ∈ 𝐵) |
| 25 | 16, 20, 22, 24 | syl3anc 1326 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑃 ∨ (𝑅‘𝐺)) ∈ 𝐵) |
| 26 | | simp2r 1088 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝑄 ∈ 𝐴) |
| 27 | 18, 23, 9 | hlatjcl 34653 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐴) → (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) |
| 28 | 3, 26, 14, 27 | syl3anc 1326 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) |
| 29 | | cdlemh.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
| 30 | 29, 23, 9 | hlatlej2 34662 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐴) → (𝑅‘(𝐺 ∘ ◡𝐹)) ≤ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
| 31 | 3, 26, 14, 30 | syl3anc 1326 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘(𝐺 ∘ ◡𝐹)) ≤ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
| 32 | | cdlemh.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
| 33 | 18, 29, 23, 32, 9 | atmod4i1 35152 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ ((𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐴 ∧ (𝑃 ∨ (𝑅‘𝐺)) ∈ 𝐵 ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ≤ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) → (((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (((𝑃 ∨ (𝑅‘𝐺)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
| 34 | 3, 14, 25, 28, 31, 33 | syl131anc 1339 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (((𝑃 ∨ (𝑅‘𝐺)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
| 35 | 10, 11 | ltrncnv 35432 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ◡𝐹 ∈ 𝑇) |
| 36 | 4, 6, 35 | syl2anc 693 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ◡𝐹 ∈ 𝑇) |
| 37 | 23, 10, 11, 12 | trljco2 36029 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ◡𝐹 ∈ 𝑇) → ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = ((𝑅‘◡𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
| 38 | 4, 5, 36, 37 | syl3anc 1326 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = ((𝑅‘◡𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
| 39 | 10, 11, 12 | trlcnv 35452 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘◡𝐹) = (𝑅‘𝐹)) |
| 40 | 4, 6, 39 | syl2anc 693 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘◡𝐹) = (𝑅‘𝐹)) |
| 41 | 40 | oveq1d 6665 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑅‘◡𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
| 42 | 38, 41 | eqtrd 2656 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
| 43 | 42 | oveq2d 6666 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑃 ∨ ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) = (𝑃 ∨ ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
| 44 | 10, 11 | ltrnco 36007 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ◡𝐹 ∈ 𝑇) → (𝐺 ∘ ◡𝐹) ∈ 𝑇) |
| 45 | 4, 5, 36, 44 | syl3anc 1326 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝐺 ∘ ◡𝐹) ∈ 𝑇) |
| 46 | 18, 10, 11, 12 | trlcl 35451 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∘ ◡𝐹) ∈ 𝑇) → (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐵) |
| 47 | 4, 45, 46 | syl2anc 693 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐵) |
| 48 | 18, 23 | latjass 17095 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ (𝑅‘𝐺) ∈ 𝐵 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐵)) → ((𝑃 ∨ (𝑅‘𝐺)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (𝑃 ∨ ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
| 49 | 16, 20, 22, 47, 48 | syl13anc 1328 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑃 ∨ (𝑅‘𝐺)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (𝑃 ∨ ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
| 50 | 18, 10, 11, 12 | trlcl 35451 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ 𝐵) |
| 51 | 4, 6, 50 | syl2anc 693 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘𝐹) ∈ 𝐵) |
| 52 | 18, 23 | latjass 17095 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ (𝑅‘𝐹) ∈ 𝐵 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐵)) → ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (𝑃 ∨ ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
| 53 | 16, 20, 51, 47, 52 | syl13anc 1328 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (𝑃 ∨ ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
| 54 | 43, 49, 53 | 3eqtr4d 2666 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑃 ∨ (𝑅‘𝐺)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
| 55 | 54 | oveq1d 6665 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (((𝑃 ∨ (𝑅‘𝐺)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) = (((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
| 56 | | simp3l 1089 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹))) |
| 57 | 18, 9 | atbase 34576 |
. . . . . . 7
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
| 58 | 26, 57 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝑄 ∈ 𝐵) |
| 59 | 18, 23 | latjcl 17051 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ (𝑅‘𝐹) ∈ 𝐵) → (𝑃 ∨ (𝑅‘𝐹)) ∈ 𝐵) |
| 60 | 16, 20, 51, 59 | syl3anc 1326 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑃 ∨ (𝑅‘𝐹)) ∈ 𝐵) |
| 61 | 18, 29, 23 | latjlej1 17065 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ 𝐵 ∧ (𝑃 ∨ (𝑅‘𝐹)) ∈ 𝐵 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐵)) → (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) → (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ≤ ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
| 62 | 16, 58, 60, 47, 61 | syl13anc 1328 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) → (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ≤ ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
| 63 | 56, 62 | mpd 15 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ≤ ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
| 64 | 18, 23 | latjcl 17051 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ (𝑅‘𝐹)) ∈ 𝐵 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐵) → ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) |
| 65 | 16, 60, 47, 64 | syl3anc 1326 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) |
| 66 | 18, 29, 32 | latleeqm2 17080 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵 ∧ ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) → ((𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ≤ ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ↔ (((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) = (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
| 67 | 16, 28, 65, 66 | syl3anc 1326 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ≤ ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ↔ (((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) = (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
| 68 | 63, 67 | mpbid 222 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) = (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
| 69 | 34, 55, 68 | 3eqtrd 2660 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
| 70 | 2, 69 | syl5eq 2668 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑆 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |