Proof of Theorem cdlemk3
| Step | Hyp | Ref
| Expression |
| 1 | | simp1l 1085 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐾 ∈ HL) |
| 2 | | simp1 1061 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 3 | | simp2l 1087 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐹 ∈ 𝑇) |
| 4 | | simp32l 1186 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐹 ≠ ( I ↾ 𝐵)) |
| 5 | | cdlemk.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
| 6 | | cdlemk.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 7 | | cdlemk.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 8 | | cdlemk.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 9 | | cdlemk.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 10 | 5, 6, 7, 8, 9 | trlnidat 35460 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘𝐹) ∈ 𝐴) |
| 11 | 2, 3, 4, 10 | syl3anc 1326 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘𝐹) ∈ 𝐴) |
| 12 | | simp2r 1088 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐺 ∈ 𝑇) |
| 13 | | simp31 1097 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘𝐺) ≠ (𝑅‘𝐹)) |
| 14 | 6, 7, 8, 9 | trlcocnvat 36012 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)) → (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐴) |
| 15 | 2, 12, 3, 13, 14 | syl121anc 1331 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐴) |
| 16 | | simp33l 1188 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑃 ∈ 𝐴) |
| 17 | | cdlemk.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 18 | 17, 6, 7, 8 | ltrnat 35426 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
| 19 | 2, 3, 16, 18 | syl3anc 1326 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝐹‘𝑃) ∈ 𝐴) |
| 20 | 7, 8 | ltrncnv 35432 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ◡𝐹 ∈ 𝑇) |
| 21 | 2, 3, 20 | syl2anc 693 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ◡𝐹 ∈ 𝑇) |
| 22 | 7, 8, 9 | trlcnv 35452 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘◡𝐹) = (𝑅‘𝐹)) |
| 23 | 2, 3, 22 | syl2anc 693 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘◡𝐹) = (𝑅‘𝐹)) |
| 24 | 13 | necomd 2849 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘𝐹) ≠ (𝑅‘𝐺)) |
| 25 | 23, 24 | eqnetrd 2861 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘◡𝐹) ≠ (𝑅‘𝐺)) |
| 26 | | simp32r 1187 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐺 ≠ ( I ↾ 𝐵)) |
| 27 | 5, 7, 8, 9 | trlcone 36016 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (◡𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘◡𝐹) ≠ (𝑅‘𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → (𝑅‘◡𝐹) ≠ (𝑅‘(◡𝐹 ∘ 𝐺))) |
| 28 | 2, 21, 12, 25, 26, 27 | syl122anc 1335 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘◡𝐹) ≠ (𝑅‘(◡𝐹 ∘ 𝐺))) |
| 29 | 7, 8 | ltrncom 36026 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ◡𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (◡𝐹 ∘ 𝐺) = (𝐺 ∘ ◡𝐹)) |
| 30 | 2, 21, 12, 29 | syl3anc 1326 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (◡𝐹 ∘ 𝐺) = (𝐺 ∘ ◡𝐹)) |
| 31 | 30 | fveq2d 6195 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘(◡𝐹 ∘ 𝐺)) = (𝑅‘(𝐺 ∘ ◡𝐹))) |
| 32 | 28, 23, 31 | 3netr3d 2870 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘𝐹) ≠ (𝑅‘(𝐺 ∘ ◡𝐹))) |
| 33 | | simp33 1099 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 34 | 17, 6, 7, 8 | ltrnel 35425 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
| 35 | 34 | simprd 479 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ (𝐹‘𝑃) ≤ 𝑊) |
| 36 | 2, 3, 33, 35 | syl3anc 1326 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ¬ (𝐹‘𝑃) ≤ 𝑊) |
| 37 | 17, 7, 8, 9 | trlle 35471 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ≤ 𝑊) |
| 38 | 2, 3, 37 | syl2anc 693 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘𝐹) ≤ 𝑊) |
| 39 | 7, 8 | ltrnco 36007 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ◡𝐹 ∈ 𝑇) → (𝐺 ∘ ◡𝐹) ∈ 𝑇) |
| 40 | 2, 12, 21, 39 | syl3anc 1326 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝐺 ∘ ◡𝐹) ∈ 𝑇) |
| 41 | 17, 7, 8, 9 | trlle 35471 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∘ ◡𝐹) ∈ 𝑇) → (𝑅‘(𝐺 ∘ ◡𝐹)) ≤ 𝑊) |
| 42 | 2, 40, 41 | syl2anc 693 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘(𝐺 ∘ ◡𝐹)) ≤ 𝑊) |
| 43 | | hllat 34650 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 44 | 1, 43 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐾 ∈ Lat) |
| 45 | 5, 6 | atbase 34576 |
. . . . . . 7
⊢ ((𝑅‘𝐹) ∈ 𝐴 → (𝑅‘𝐹) ∈ 𝐵) |
| 46 | 11, 45 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘𝐹) ∈ 𝐵) |
| 47 | 5, 6 | atbase 34576 |
. . . . . . 7
⊢ ((𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐴 → (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐵) |
| 48 | 15, 47 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐵) |
| 49 | | simp1r 1086 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑊 ∈ 𝐻) |
| 50 | 5, 7 | lhpbase 35284 |
. . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 51 | 49, 50 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑊 ∈ 𝐵) |
| 52 | | cdlemk.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
| 53 | 5, 17, 52 | latjle12 17062 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ ((𝑅‘𝐹) ∈ 𝐵 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (((𝑅‘𝐹) ≤ 𝑊 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ≤ 𝑊) ↔ ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ≤ 𝑊)) |
| 54 | 44, 46, 48, 51, 53 | syl13anc 1328 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (((𝑅‘𝐹) ≤ 𝑊 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ≤ 𝑊) ↔ ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ≤ 𝑊)) |
| 55 | 38, 42, 54 | mpbi2and 956 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ≤ 𝑊) |
| 56 | 5, 6 | atbase 34576 |
. . . . . 6
⊢ ((𝐹‘𝑃) ∈ 𝐴 → (𝐹‘𝑃) ∈ 𝐵) |
| 57 | 19, 56 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝐹‘𝑃) ∈ 𝐵) |
| 58 | 5, 52, 6 | hlatjcl 34653 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑅‘𝐹) ∈ 𝐴 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐴) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) |
| 59 | 1, 11, 15, 58 | syl3anc 1326 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) |
| 60 | 5, 17 | lattr 17056 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ ((𝐹‘𝑃) ∈ 𝐵 ∧ ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (((𝐹‘𝑃) ≤ ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∧ ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ≤ 𝑊) → (𝐹‘𝑃) ≤ 𝑊)) |
| 61 | 44, 57, 59, 51, 60 | syl13anc 1328 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (((𝐹‘𝑃) ≤ ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∧ ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ≤ 𝑊) → (𝐹‘𝑃) ≤ 𝑊)) |
| 62 | 55, 61 | mpan2d 710 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝐹‘𝑃) ≤ ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) → (𝐹‘𝑃) ≤ 𝑊)) |
| 63 | 36, 62 | mtod 189 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ¬ (𝐹‘𝑃) ≤ ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
| 64 | | cdlemk.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
| 65 | 17, 52, 64, 6 | 2llnma2 35075 |
. 2
⊢ ((𝐾 ∈ HL ∧ ((𝑅‘𝐹) ∈ 𝐴 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐴 ∧ (𝐹‘𝑃) ∈ 𝐴) ∧ ((𝑅‘𝐹) ≠ (𝑅‘(𝐺 ∘ ◡𝐹)) ∧ ¬ (𝐹‘𝑃) ≤ ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) → (((𝐹‘𝑃) ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) = (𝐹‘𝑃)) |
| 66 | 1, 11, 15, 19, 32, 63, 65 | syl132anc 1344 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (((𝐹‘𝑃) ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) = (𝐹‘𝑃)) |