Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnat Structured version   Visualization version   GIF version

Theorem ltrnat 35426
Description: The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel 35425 uses. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
ltrnel.l = (le‘𝐾)
ltrnel.a 𝐴 = (Atoms‘𝐾)
ltrnel.h 𝐻 = (LHyp‘𝐾)
ltrnel.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)

Proof of Theorem ltrnat
StepHypRef Expression
1 simp3 1063 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → 𝑃𝐴)
2 eqid 2622 . . . 4 (Base‘𝐾) = (Base‘𝐾)
3 ltrnel.a . . . 4 𝐴 = (Atoms‘𝐾)
42, 3atbase 34576 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
5 ltrnel.h . . . 4 𝐻 = (LHyp‘𝐾)
6 ltrnel.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
72, 3, 5, 6ltrnatb 35423 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃 ∈ (Base‘𝐾)) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))
84, 7syl3an3 1361 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))
91, 8mpbid 222 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  Basecbs 15857  lecple 15948  Atomscatm 34550  HLchlt 34637  LHypclh 35270  LTrncltrn 35387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-plt 16958  df-glb 16975  df-p0 17039  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-hlat 34638  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391
This theorem is referenced by:  ltrncoat  35430  trlcnv  35452  trljat2  35454  trlat  35456  trlval3  35474  trlval4  35475  cdlemc3  35480  cdlemc5  35482  cdlemg2kq  35890  cdlemg9a  35920  cdlemg9  35922  cdlemg10bALTN  35924  cdlemg10c  35927  cdlemg10a  35928  cdlemg10  35929  cdlemg12a  35931  cdlemg12c  35933  cdlemg13a  35939  cdlemg17a  35949  cdlemg17g  35955  cdlemg18a  35966  cdlemg18b  35967  cdlemg18c  35968  trlcoabs2N  36010  trlcolem  36014  cdlemg42  36017  cdlemi  36108  cdlemk3  36121  cdlemk4  36122  cdlemk6  36125  cdlemk9  36127  cdlemk9bN  36128  cdlemk10  36131  cdlemksat  36134  cdlemk7  36136  cdlemk12  36138  cdlemkole  36141  cdlemk14  36142  cdlemk15  36143  cdlemk17  36146  cdlemk5u  36149  cdlemk6u  36150  cdlemkuat  36154  cdlemk7u  36158  cdlemk12u  36160  cdlemk37  36202  cdlemk39  36204  cdlemkfid1N  36209  cdlemk47  36237  cdlemk48  36238  cdlemk50  36240  cdlemk51  36241  cdlemk52  36242  cdlemm10N  36407
  Copyright terms: Public domain W3C validator