Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml1N Structured version   Visualization version   GIF version

Theorem cdleml1N 36264
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b 𝐵 = (Base‘𝐾)
cdleml1.h 𝐻 = (LHyp‘𝐾)
cdleml1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdleml1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdleml1.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
cdleml1N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈𝑓)) = (𝑅‘(𝑉𝑓)))

Proof of Theorem cdleml1N
StepHypRef Expression
1 simp1 1061 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21 1094 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝑈𝐸)
3 simp23 1096 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝑓𝑇)
4 eqid 2622 . . . . 5 (le‘𝐾) = (le‘𝐾)
5 cdleml1.h . . . . 5 𝐻 = (LHyp‘𝐾)
6 cdleml1.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
7 cdleml1.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
8 cdleml1.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
94, 5, 6, 7, 8tendotp 36049 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑓𝑇) → (𝑅‘(𝑈𝑓))(le‘𝐾)(𝑅𝑓))
101, 2, 3, 9syl3anc 1326 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈𝑓))(le‘𝐾)(𝑅𝑓))
11 simp1l 1085 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝐾 ∈ HL)
12 hlatl 34647 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1311, 12syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝐾 ∈ AtLat)
145, 6, 8tendocl 36055 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑓𝑇) → (𝑈𝑓) ∈ 𝑇)
151, 2, 3, 14syl3anc 1326 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑈𝑓) ∈ 𝑇)
16 simp32 1098 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑈𝑓) ≠ ( I ↾ 𝐵))
17 cdleml1.b . . . . . 6 𝐵 = (Base‘𝐾)
18 eqid 2622 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
1917, 18, 5, 6, 7trlnidat 35460 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝑓) ∈ 𝑇 ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝑓)) ∈ (Atoms‘𝐾))
201, 15, 16, 19syl3anc 1326 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈𝑓)) ∈ (Atoms‘𝐾))
21 simp31 1097 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝑓 ≠ ( I ↾ 𝐵))
2217, 18, 5, 6, 7trlnidat 35460 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → (𝑅𝑓) ∈ (Atoms‘𝐾))
231, 3, 21, 22syl3anc 1326 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅𝑓) ∈ (Atoms‘𝐾))
244, 18atcmp 34598 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑅‘(𝑈𝑓)) ∈ (Atoms‘𝐾) ∧ (𝑅𝑓) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝑈𝑓))(le‘𝐾)(𝑅𝑓) ↔ (𝑅‘(𝑈𝑓)) = (𝑅𝑓)))
2513, 20, 23, 24syl3anc 1326 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → ((𝑅‘(𝑈𝑓))(le‘𝐾)(𝑅𝑓) ↔ (𝑅‘(𝑈𝑓)) = (𝑅𝑓)))
2610, 25mpbid 222 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈𝑓)) = (𝑅𝑓))
27 simp22 1095 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝑉𝐸)
284, 5, 6, 7, 8tendotp 36049 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑓𝑇) → (𝑅‘(𝑉𝑓))(le‘𝐾)(𝑅𝑓))
291, 27, 3, 28syl3anc 1326 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑉𝑓))(le‘𝐾)(𝑅𝑓))
305, 6, 8tendocl 36055 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑓𝑇) → (𝑉𝑓) ∈ 𝑇)
311, 27, 3, 30syl3anc 1326 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑉𝑓) ∈ 𝑇)
32 simp33 1099 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑉𝑓) ≠ ( I ↾ 𝐵))
3317, 18, 5, 6, 7trlnidat 35460 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑉𝑓) ∈ 𝑇 ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑉𝑓)) ∈ (Atoms‘𝐾))
341, 31, 32, 33syl3anc 1326 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑉𝑓)) ∈ (Atoms‘𝐾))
354, 18atcmp 34598 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑅‘(𝑉𝑓)) ∈ (Atoms‘𝐾) ∧ (𝑅𝑓) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝑉𝑓))(le‘𝐾)(𝑅𝑓) ↔ (𝑅‘(𝑉𝑓)) = (𝑅𝑓)))
3613, 34, 23, 35syl3anc 1326 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → ((𝑅‘(𝑉𝑓))(le‘𝐾)(𝑅𝑓) ↔ (𝑅‘(𝑉𝑓)) = (𝑅𝑓)))
3729, 36mpbid 222 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑉𝑓)) = (𝑅𝑓))
3826, 37eqtr4d 2659 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈𝑓)) = (𝑅‘(𝑉𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653   I cid 5023  cres 5116  cfv 5888  Basecbs 15857  lecple 15948  Atomscatm 34550  AtLatcal 34551  HLchlt 34637  LHypclh 35270  LTrncltrn 35387  trLctrl 35445  TEndoctendo 36040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043
This theorem is referenced by:  cdleml2N  36265
  Copyright terms: Public domain W3C validator