| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cf0 | Structured version Visualization version GIF version | ||
| Description: Value of the cofinality function at 0. Exercise 2 of [TakeutiZaring] p. 102. (Contributed by NM, 16-Apr-2004.) |
| Ref | Expression |
|---|---|
| cf0 | ⊢ (cf‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfub 9071 | . . 3 ⊢ (cf‘∅) ⊆ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} | |
| 2 | 0ss 3972 | . . . . . . . . . . . . 13 ⊢ ∅ ⊆ ∪ 𝑦 | |
| 3 | 2 | biantru 526 | . . . . . . . . . . . 12 ⊢ (𝑦 ⊆ ∅ ↔ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) |
| 4 | ss0b 3973 | . . . . . . . . . . . 12 ⊢ (𝑦 ⊆ ∅ ↔ 𝑦 = ∅) | |
| 5 | 3, 4 | bitr3i 266 | . . . . . . . . . . 11 ⊢ ((𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦) ↔ 𝑦 = ∅) |
| 6 | 5 | anbi2i 730 | . . . . . . . . . 10 ⊢ ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ (𝑥 = (card‘𝑦) ∧ 𝑦 = ∅)) |
| 7 | ancom 466 | . . . . . . . . . 10 ⊢ ((𝑥 = (card‘𝑦) ∧ 𝑦 = ∅) ↔ (𝑦 = ∅ ∧ 𝑥 = (card‘𝑦))) | |
| 8 | 6, 7 | bitri 264 | . . . . . . . . 9 ⊢ ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ (𝑦 = ∅ ∧ 𝑥 = (card‘𝑦))) |
| 9 | 8 | exbii 1774 | . . . . . . . 8 ⊢ (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦))) |
| 10 | 0ex 4790 | . . . . . . . . . 10 ⊢ ∅ ∈ V | |
| 11 | fveq2 6191 | . . . . . . . . . . 11 ⊢ (𝑦 = ∅ → (card‘𝑦) = (card‘∅)) | |
| 12 | 11 | eqeq2d 2632 | . . . . . . . . . 10 ⊢ (𝑦 = ∅ → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘∅))) |
| 13 | 10, 12 | ceqsexv 3242 | . . . . . . . . 9 ⊢ (∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)) ↔ 𝑥 = (card‘∅)) |
| 14 | card0 8784 | . . . . . . . . . 10 ⊢ (card‘∅) = ∅ | |
| 15 | 14 | eqeq2i 2634 | . . . . . . . . 9 ⊢ (𝑥 = (card‘∅) ↔ 𝑥 = ∅) |
| 16 | 13, 15 | bitri 264 | . . . . . . . 8 ⊢ (∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)) ↔ 𝑥 = ∅) |
| 17 | 9, 16 | bitri 264 | . . . . . . 7 ⊢ (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦)) ↔ 𝑥 = ∅) |
| 18 | 17 | abbii 2739 | . . . . . 6 ⊢ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = {𝑥 ∣ 𝑥 = ∅} |
| 19 | df-sn 4178 | . . . . . 6 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
| 20 | 18, 19 | eqtr4i 2647 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = {∅} |
| 21 | 20 | inteqi 4479 | . . . 4 ⊢ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = ∩ {∅} |
| 22 | 10 | intsn 4513 | . . . 4 ⊢ ∩ {∅} = ∅ |
| 23 | 21, 22 | eqtri 2644 | . . 3 ⊢ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦))} = ∅ |
| 24 | 1, 23 | sseqtri 3637 | . 2 ⊢ (cf‘∅) ⊆ ∅ |
| 25 | ss0b 3973 | . 2 ⊢ ((cf‘∅) ⊆ ∅ ↔ (cf‘∅) = ∅) | |
| 26 | 24, 25 | mpbi 220 | 1 ⊢ (cf‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 384 = wceq 1483 ∃wex 1704 {cab 2608 ⊆ wss 3574 ∅c0 3915 {csn 4177 ∪ cuni 4436 ∩ cint 4475 ‘cfv 5888 cardccrd 8761 cfccf 8763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-en 7956 df-card 8765 df-cf 8767 |
| This theorem is referenced by: cfeq0 9078 cflim2 9085 cfidm 9097 alephsing 9098 alephreg 9404 pwcfsdom 9405 rankcf 9599 |
| Copyright terms: Public domain | W3C validator |