MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cf0 Structured version   Visualization version   Unicode version

Theorem cf0 9073
Description: Value of the cofinality function at 0. Exercise 2 of [TakeutiZaring] p. 102. (Contributed by NM, 16-Apr-2004.)
Assertion
Ref Expression
cf0  |-  ( cf `  (/) )  =  (/)

Proof of Theorem cf0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfub 9071 . . 3  |-  ( cf `  (/) )  C_  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) ) }
2 0ss 3972 . . . . . . . . . . . . 13  |-  (/)  C_  U. y
32biantru 526 . . . . . . . . . . . 12  |-  ( y 
C_  (/)  <->  ( y  C_  (/) 
/\  (/)  C_  U. y
) )
4 ss0b 3973 . . . . . . . . . . . 12  |-  ( y 
C_  (/)  <->  y  =  (/) )
53, 4bitr3i 266 . . . . . . . . . . 11  |-  ( ( y  C_  (/)  /\  (/)  C_  U. y
)  <->  y  =  (/) )
65anbi2i 730 . . . . . . . . . 10  |-  ( ( x  =  ( card `  y )  /\  (
y  C_  (/)  /\  (/)  C_  U. y
) )  <->  ( x  =  ( card `  y
)  /\  y  =  (/) ) )
7 ancom 466 . . . . . . . . . 10  |-  ( ( x  =  ( card `  y )  /\  y  =  (/) )  <->  ( y  =  (/)  /\  x  =  ( card `  y
) ) )
86, 7bitri 264 . . . . . . . . 9  |-  ( ( x  =  ( card `  y )  /\  (
y  C_  (/)  /\  (/)  C_  U. y
) )  <->  ( y  =  (/)  /\  x  =  ( card `  y
) ) )
98exbii 1774 . . . . . . . 8  |-  ( E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) )  <->  E. y
( y  =  (/)  /\  x  =  ( card `  y ) ) )
10 0ex 4790 . . . . . . . . . 10  |-  (/)  e.  _V
11 fveq2 6191 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( card `  y )  =  (
card `  (/) ) )
1211eqeq2d 2632 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( x  =  ( card `  y
)  <->  x  =  ( card `  (/) ) ) )
1310, 12ceqsexv 3242 . . . . . . . . 9  |-  ( E. y ( y  =  (/)  /\  x  =  (
card `  y )
)  <->  x  =  ( card `  (/) ) )
14 card0 8784 . . . . . . . . . 10  |-  ( card `  (/) )  =  (/)
1514eqeq2i 2634 . . . . . . . . 9  |-  ( x  =  ( card `  (/) )  <->  x  =  (/) )
1613, 15bitri 264 . . . . . . . 8  |-  ( E. y ( y  =  (/)  /\  x  =  (
card `  y )
)  <->  x  =  (/) )
179, 16bitri 264 . . . . . . 7  |-  ( E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) )  <->  x  =  (/) )
1817abbii 2739 . . . . . 6  |-  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) ) }  =  { x  |  x  =  (/) }
19 df-sn 4178 . . . . . 6  |-  { (/) }  =  { x  |  x  =  (/) }
2018, 19eqtr4i 2647 . . . . 5  |-  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) ) }  =  { (/) }
2120inteqi 4479 . . . 4  |-  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) ) }  =  |^| { (/) }
2210intsn 4513 . . . 4  |-  |^| { (/) }  =  (/)
2321, 22eqtri 2644 . . 3  |-  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) ) }  =  (/)
241, 23sseqtri 3637 . 2  |-  ( cf `  (/) )  C_  (/)
25 ss0b 3973 . 2  |-  ( ( cf `  (/) )  C_  (/)  <->  ( cf `  (/) )  =  (/) )
2624, 25mpbi 220 1  |-  ( cf `  (/) )  =  (/)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704   {cab 2608    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436   |^|cint 4475   ` cfv 5888   cardccrd 8761   cfccf 8763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-en 7956  df-card 8765  df-cf 8767
This theorem is referenced by:  cfeq0  9078  cflim2  9085  cfidm  9097  alephsing  9098  alephreg  9404  pwcfsdom  9405  rankcf  9599
  Copyright terms: Public domain W3C validator