MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cidfn Structured version   Visualization version   GIF version

Theorem cidfn 16340
Description: The identity arrow operator is a function from objects to arrows. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
cidfn.b 𝐵 = (Base‘𝐶)
cidfn.i 1 = (Id‘𝐶)
Assertion
Ref Expression
cidfn (𝐶 ∈ Cat → 1 Fn 𝐵)

Proof of Theorem cidfn
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 6615 . . 3 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ V
2 eqid 2622 . . 3 (𝑥𝐵 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)))
31, 2fnmpti 6022 . 2 (𝑥𝐵 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))) Fn 𝐵
4 cidfn.b . . . 4 𝐵 = (Base‘𝐶)
5 eqid 2622 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2622 . . . 4 (comp‘𝐶) = (comp‘𝐶)
7 id 22 . . . 4 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
8 cidfn.i . . . 4 1 = (Id‘𝐶)
94, 5, 6, 7, 8cidfval 16337 . . 3 (𝐶 ∈ Cat → 1 = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))))
109fneq1d 5981 . 2 (𝐶 ∈ Cat → ( 1 Fn 𝐵 ↔ (𝑥𝐵 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))) Fn 𝐵))
113, 10mpbiri 248 1 (𝐶 ∈ Cat → 1 Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  cop 4183  cmpt 4729   Fn wfn 5883  cfv 5888  crio 6610  (class class class)co 6650  Basecbs 15857  Hom chom 15952  compcco 15953  Catccat 16325  Idccid 16326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-cid 16330
This theorem is referenced by:  oppccatid  16379  fucidcl  16625  fucsect  16632  curfcl  16872  curf2ndf  16887
  Copyright terms: Public domain W3C validator