MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucidcl Structured version   Visualization version   GIF version

Theorem fucidcl 16625
Description: The identity natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucidcl.q 𝑄 = (𝐶 FuncCat 𝐷)
fucidcl.n 𝑁 = (𝐶 Nat 𝐷)
fucidcl.x 1 = (Id‘𝐷)
fucidcl.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
Assertion
Ref Expression
fucidcl (𝜑 → ( 1 ∘ (1st𝐹)) ∈ (𝐹𝑁𝐹))

Proof of Theorem fucidcl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucidcl.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
2 funcrcl 16523 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
31, 2syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
43simprd 479 . . . . . 6 (𝜑𝐷 ∈ Cat)
5 eqid 2622 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
6 fucidcl.x . . . . . . 7 1 = (Id‘𝐷)
75, 6cidfn 16340 . . . . . 6 (𝐷 ∈ Cat → 1 Fn (Base‘𝐷))
84, 7syl 17 . . . . 5 (𝜑1 Fn (Base‘𝐷))
9 dffn2 6047 . . . . 5 ( 1 Fn (Base‘𝐷) ↔ 1 :(Base‘𝐷)⟶V)
108, 9sylib 208 . . . 4 (𝜑1 :(Base‘𝐷)⟶V)
11 eqid 2622 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
12 relfunc 16522 . . . . . 6 Rel (𝐶 Func 𝐷)
13 1st2ndbr 7217 . . . . . 6 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1412, 1, 13sylancr 695 . . . . 5 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1511, 5, 14funcf1 16526 . . . 4 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
16 fcompt 6400 . . . 4 (( 1 :(Base‘𝐷)⟶V ∧ (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷)) → ( 1 ∘ (1st𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))))
1710, 15, 16syl2anc 693 . . 3 (𝜑 → ( 1 ∘ (1st𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))))
18 eqid 2622 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
194adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
2015ffvelrnda 6359 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
215, 18, 6, 19, 20catidcl 16343 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2221ralrimiva 2966 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
23 fvex 6201 . . . . 5 (Base‘𝐶) ∈ V
24 mptelixpg 7945 . . . . 5 ((Base‘𝐶) ∈ V → ((𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥))))
2523, 24ax-mp 5 . . . 4 ((𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2622, 25sylibr 224 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2717, 26eqeltrd 2701 . 2 (𝜑 → ( 1 ∘ (1st𝐹)) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
284adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝐷 ∈ Cat)
29 simpr1 1067 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ (Base‘𝐶))
3029, 20syldan 487 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
31 eqid 2622 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
3215adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
33 simpr2 1068 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑦 ∈ (Base‘𝐶))
3432, 33ffvelrnd 6360 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
35 eqid 2622 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
3614adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3711, 35, 18, 36, 29, 33funcf2 16528 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
38 simpr3 1069 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
3937, 38ffvelrnd 6360 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
405, 18, 6, 28, 30, 31, 34, 39catlid 16344 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ‘((1st𝐹)‘𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
415, 18, 6, 28, 30, 31, 34, 39catrid 16345 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))( 1 ‘((1st𝐹)‘𝑥))) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
4240, 41eqtr4d 2659 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ‘((1st𝐹)‘𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))( 1 ‘((1st𝐹)‘𝑥))))
43 fvco3 6275 . . . . . 6 (((1st𝐹):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐶)) → (( 1 ∘ (1st𝐹))‘𝑦) = ( 1 ‘((1st𝐹)‘𝑦)))
4432, 33, 43syl2anc 693 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ∘ (1st𝐹))‘𝑦) = ( 1 ‘((1st𝐹)‘𝑦)))
4544oveq1d 6665 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (( 1 ‘((1st𝐹)‘𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)))
46 fvco3 6275 . . . . . 6 (((1st𝐹):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑥 ∈ (Base‘𝐶)) → (( 1 ∘ (1st𝐹))‘𝑥) = ( 1 ‘((1st𝐹)‘𝑥)))
4732, 29, 46syl2anc 693 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ∘ (1st𝐹))‘𝑥) = ( 1 ‘((1st𝐹)‘𝑥)))
4847oveq2d 6666 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))( 1 ‘((1st𝐹)‘𝑥))))
4942, 45, 483eqtr4d 2666 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)))
5049ralrimivvva 2972 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)))
51 fucidcl.n . . 3 𝑁 = (𝐶 Nat 𝐷)
5251, 11, 35, 18, 31, 1, 1isnat2 16608 . 2 (𝜑 → (( 1 ∘ (1st𝐹)) ∈ (𝐹𝑁𝐹) ↔ (( 1 ∘ (1st𝐹)) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)))))
5327, 50, 52mpbir2and 957 1 (𝜑 → ( 1 ∘ (1st𝐹)) ∈ (𝐹𝑁𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cop 4183   class class class wbr 4653  cmpt 4729  ccom 5118  Rel wrel 5119   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  Xcixp 7908  Basecbs 15857  Hom chom 15952  compcco 15953  Catccat 16325  Idccid 16326   Func cfunc 16514   Nat cnat 16601   FuncCat cfuc 16602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-cat 16329  df-cid 16330  df-func 16518  df-nat 16603
This theorem is referenced by:  fuclid  16626  fucrid  16627  fuccatid  16629
  Copyright terms: Public domain W3C validator