MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cidfn Structured version   Visualization version   Unicode version

Theorem cidfn 16340
Description: The identity arrow operator is a function from objects to arrows. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
cidfn.b  |-  B  =  ( Base `  C
)
cidfn.i  |-  .1.  =  ( Id `  C )
Assertion
Ref Expression
cidfn  |-  ( C  e.  Cat  ->  .1.  Fn  B )

Proof of Theorem cidfn
Dummy variables  f 
g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 6615 . . 3  |-  ( iota_ g  e.  ( x ( Hom  `  C )
x ) A. y  e.  B  ( A. f  e.  ( y
( Hom  `  C ) x ) ( g ( <. y ,  x >. (comp `  C )
x ) f )  =  f  /\  A. f  e.  ( x
( Hom  `  C ) y ) ( f ( <. x ,  x >. (comp `  C )
y ) g )  =  f ) )  e.  _V
2 eqid 2622 . . 3  |-  ( x  e.  B  |->  ( iota_ g  e.  ( x ( Hom  `  C )
x ) A. y  e.  B  ( A. f  e.  ( y
( Hom  `  C ) x ) ( g ( <. y ,  x >. (comp `  C )
x ) f )  =  f  /\  A. f  e.  ( x
( Hom  `  C ) y ) ( f ( <. x ,  x >. (comp `  C )
y ) g )  =  f ) ) )  =  ( x  e.  B  |->  ( iota_ g  e.  ( x ( Hom  `  C )
x ) A. y  e.  B  ( A. f  e.  ( y
( Hom  `  C ) x ) ( g ( <. y ,  x >. (comp `  C )
x ) f )  =  f  /\  A. f  e.  ( x
( Hom  `  C ) y ) ( f ( <. x ,  x >. (comp `  C )
y ) g )  =  f ) ) )
31, 2fnmpti 6022 . 2  |-  ( x  e.  B  |->  ( iota_ g  e.  ( x ( Hom  `  C )
x ) A. y  e.  B  ( A. f  e.  ( y
( Hom  `  C ) x ) ( g ( <. y ,  x >. (comp `  C )
x ) f )  =  f  /\  A. f  e.  ( x
( Hom  `  C ) y ) ( f ( <. x ,  x >. (comp `  C )
y ) g )  =  f ) ) )  Fn  B
4 cidfn.b . . . 4  |-  B  =  ( Base `  C
)
5 eqid 2622 . . . 4  |-  ( Hom  `  C )  =  ( Hom  `  C )
6 eqid 2622 . . . 4  |-  (comp `  C )  =  (comp `  C )
7 id 22 . . . 4  |-  ( C  e.  Cat  ->  C  e.  Cat )
8 cidfn.i . . . 4  |-  .1.  =  ( Id `  C )
94, 5, 6, 7, 8cidfval 16337 . . 3  |-  ( C  e.  Cat  ->  .1.  =  ( x  e.  B  |->  ( iota_ g  e.  ( x ( Hom  `  C ) x ) A. y  e.  B  ( A. f  e.  ( y ( Hom  `  C
) x ) ( g ( <. y ,  x >. (comp `  C
) x ) f )  =  f  /\  A. f  e.  ( x ( Hom  `  C
) y ) ( f ( <. x ,  x >. (comp `  C
) y ) g )  =  f ) ) ) )
109fneq1d 5981 . 2  |-  ( C  e.  Cat  ->  (  .1.  Fn  B  <->  ( x  e.  B  |->  ( iota_ g  e.  ( x ( Hom  `  C )
x ) A. y  e.  B  ( A. f  e.  ( y
( Hom  `  C ) x ) ( g ( <. y ,  x >. (comp `  C )
x ) f )  =  f  /\  A. f  e.  ( x
( Hom  `  C ) y ) ( f ( <. x ,  x >. (comp `  C )
y ) g )  =  f ) ) )  Fn  B ) )
113, 10mpbiri 248 1  |-  ( C  e.  Cat  ->  .1.  Fn  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   <.cop 4183    |-> cmpt 4729    Fn wfn 5883   ` cfv 5888   iota_crio 6610  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-cid 16330
This theorem is referenced by:  oppccatid  16379  fucidcl  16625  fucsect  16632  curfcl  16872  curf2ndf  16887
  Copyright terms: Public domain W3C validator