MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf2ndf Structured version   Visualization version   GIF version

Theorem curf2ndf 16887
Description: As shown in diagval 16880, the currying of the first projection is the diagonal functor. On the other hand, the currying of the second projection is 𝑥𝐶 ↦ (𝑦𝐷𝑦), which is a constant functor of the identity functor at 𝐷. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
curf2ndf.q 𝑄 = (𝐷 FuncCat 𝐷)
curf2ndf.c (𝜑𝐶 ∈ Cat)
curf2ndf.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
curf2ndf (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))

Proof of Theorem curf2ndf
Dummy variables 𝑢 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6653 . . . . . . . . . . 11 (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦) = ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑥, 𝑦⟩)
2 eqid 2622 . . . . . . . . . . . . 13 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
3 eqid 2622 . . . . . . . . . . . . . 14 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2622 . . . . . . . . . . . . . 14 (Base‘𝐷) = (Base‘𝐷)
52, 3, 4xpcbas 16818 . . . . . . . . . . . . 13 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝐶 ×c 𝐷))
6 eqid 2622 . . . . . . . . . . . . 13 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
7 curf2ndf.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ Cat)
87ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
9 curf2ndf.d . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ Cat)
109ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
11 eqid 2622 . . . . . . . . . . . . 13 (𝐶 2ndF 𝐷) = (𝐶 2ndF 𝐷)
12 opelxpi 5148 . . . . . . . . . . . . . 14 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
1312adantll 750 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
142, 5, 6, 8, 10, 11, 132ndf1 16835 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝑥, 𝑦⟩))
15 vex 3203 . . . . . . . . . . . . 13 𝑥 ∈ V
16 vex 3203 . . . . . . . . . . . . 13 𝑦 ∈ V
1715, 16op2nd 7177 . . . . . . . . . . . 12 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
1814, 17syl6eq 2672 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑥, 𝑦⟩) = 𝑦)
191, 18syl5eq 2668 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦) = 𝑦)
2019mpteq2dva 4744 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)) = (𝑦 ∈ (Base‘𝐷) ↦ 𝑦))
21 mptresid 5456 . . . . . . . . 9 (𝑦 ∈ (Base‘𝐷) ↦ 𝑦) = ( I ↾ (Base‘𝐷))
2220, 21syl6eq 2672 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)) = ( I ↾ (Base‘𝐷)))
23 df-ov 6653 . . . . . . . . . . . . . . 15 (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓) = ((⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩)
248ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐶 ∈ Cat)
2510ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐷 ∈ Cat)
2613ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
27 simp-4r 807 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑥 ∈ (Base‘𝐶))
28 simplr 792 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑧 ∈ (Base‘𝐷))
29 opelxpi 5148 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
3027, 28, 29syl2anc 693 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑥, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
312, 5, 6, 24, 25, 11, 26, 302ndf2 16836 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩) = (2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩)))
3231fveq1d 6193 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩))
3323, 32syl5eq 2668 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓) = ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩))
34 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 (Hom ‘𝐶) = (Hom ‘𝐶)
35 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 (Id‘𝐶) = (Id‘𝐶)
367adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
37 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
383, 34, 35, 36, 37catidcl 16343 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
3938ad3antrrr 766 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
40 simpr 477 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧))
41 opelxpi 5148 . . . . . . . . . . . . . . . . . 18 ((((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨((Id‘𝐶)‘𝑥), 𝑓⟩ ∈ ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑧)))
4239, 40, 41syl2anc 693 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨((Id‘𝐶)‘𝑥), 𝑓⟩ ∈ ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑧)))
43 eqid 2622 . . . . . . . . . . . . . . . . . 18 (Hom ‘𝐷) = (Hom ‘𝐷)
44 simpllr 799 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑦 ∈ (Base‘𝐷))
452, 3, 4, 34, 43, 27, 44, 27, 28, 6xpchom2 16826 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩) = ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑧)))
4642, 45eleqtrrd 2704 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨((Id‘𝐶)‘𝑥), 𝑓⟩ ∈ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))
47 fvres 6207 . . . . . . . . . . . . . . . 16 (⟨((Id‘𝐶)‘𝑥), 𝑓⟩ ∈ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩) → ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = (2nd ‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩))
4846, 47syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = (2nd ‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩))
49 fvex 6201 . . . . . . . . . . . . . . . 16 ((Id‘𝐶)‘𝑥) ∈ V
50 vex 3203 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
5149, 50op2nd 7177 . . . . . . . . . . . . . . 15 (2nd ‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = 𝑓
5248, 51syl6eq 2672 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = 𝑓)
5333, 52eqtrd 2656 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓) = 𝑓)
5453mpteq2dva 4744 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)) = (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ 𝑓))
55 mptresid 5456 . . . . . . . . . . . 12 (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ 𝑓) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧))
5654, 55syl6eq 2672 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
57563impa 1259 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
5857mpt2eq3dva 6719 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ ( I ↾ (𝑦(Hom ‘𝐷)𝑧))))
59 fveq2 6191 . . . . . . . . . . . 12 (𝑢 = ⟨𝑦, 𝑧⟩ → ((Hom ‘𝐷)‘𝑢) = ((Hom ‘𝐷)‘⟨𝑦, 𝑧⟩))
60 df-ov 6653 . . . . . . . . . . . 12 (𝑦(Hom ‘𝐷)𝑧) = ((Hom ‘𝐷)‘⟨𝑦, 𝑧⟩)
6159, 60syl6eqr 2674 . . . . . . . . . . 11 (𝑢 = ⟨𝑦, 𝑧⟩ → ((Hom ‘𝐷)‘𝑢) = (𝑦(Hom ‘𝐷)𝑧))
6261reseq2d 5396 . . . . . . . . . 10 (𝑢 = ⟨𝑦, 𝑧⟩ → ( I ↾ ((Hom ‘𝐷)‘𝑢)) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
6362mpt2mpt 6752 . . . . . . . . 9 (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
6458, 63syl6eqr 2674 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓))) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢))))
6522, 64opeq12d 4410 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)))⟩ = ⟨( I ↾ (Base‘𝐷)), (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢)))⟩)
66 eqid 2622 . . . . . . . 8 (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))
679adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
682, 7, 9, 112ndfcl 16838 . . . . . . . . 9 (𝜑 → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
6968adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
70 eqid 2622 . . . . . . . 8 ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)
7166, 3, 36, 67, 69, 4, 37, 70, 43, 35curf1 16865 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)))⟩)
72 eqid 2622 . . . . . . . 8 (idfunc𝐷) = (idfunc𝐷)
7372, 4, 67, 43idfuval 16536 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (idfunc𝐷) = ⟨( I ↾ (Base‘𝐷)), (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢)))⟩)
7465, 71, 733eqtr4d 2666 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = (idfunc𝐷))
75 eqid 2622 . . . . . . 7 (𝑄Δfunc𝐶) = (𝑄Δfunc𝐶)
76 curf2ndf.q . . . . . . . . 9 𝑄 = (𝐷 FuncCat 𝐷)
7776, 9, 9fuccat 16630 . . . . . . . 8 (𝜑𝑄 ∈ Cat)
7877adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑄 ∈ Cat)
7976fucbas 16620 . . . . . . 7 (𝐷 Func 𝐷) = (Base‘𝑄)
8072idfucl 16541 . . . . . . . . 9 (𝐷 ∈ Cat → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
819, 80syl 17 . . . . . . . 8 (𝜑 → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
8281adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
83 eqid 2622 . . . . . . 7 ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) = ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))
8475, 78, 36, 79, 82, 83, 3, 37diag11 16883 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥) = (idfunc𝐷))
8574, 84eqtr4d 2659 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥))
8685mpteq2dva 4744 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥)))
87 relfunc 16522 . . . . . . 7 Rel (𝐶 Func 𝑄)
8866, 76, 7, 9, 68curfcl 16872 . . . . . . 7 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) ∈ (𝐶 Func 𝑄))
89 1st2ndbr 7217 . . . . . . 7 ((Rel (𝐶 Func 𝑄) ∧ (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) ∈ (𝐶 Func 𝑄)) → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))(𝐶 Func 𝑄)(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))))
9087, 88, 89sylancr 695 . . . . . 6 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))(𝐶 Func 𝑄)(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))))
913, 79, 90funcf1 16526 . . . . 5 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))):(Base‘𝐶)⟶(𝐷 Func 𝐷))
9291feqmptd 6249 . . . 4 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)))
9375, 77, 7, 79, 81, 83diag1cl 16882 . . . . . . 7 (𝜑 → ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) ∈ (𝐶 Func 𝑄))
94 1st2ndbr 7217 . . . . . . 7 ((Rel (𝐶 Func 𝑄) ∧ ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) ∈ (𝐶 Func 𝑄)) → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))(𝐶 Func 𝑄)(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
9587, 93, 94sylancr 695 . . . . . 6 (𝜑 → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))(𝐶 Func 𝑄)(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
963, 79, 95funcf1 16526 . . . . 5 (𝜑 → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))):(Base‘𝐶)⟶(𝐷 Func 𝐷))
9796feqmptd 6249 . . . 4 (𝜑 → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥)))
9886, 92, 973eqtr4d 2666 . . 3 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
999ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐷 ∈ Cat)
10072, 4, 99idfu1st 16539 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘(idfunc𝐷)) = ( I ↾ (Base‘𝐷)))
101100coeq2d 5284 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Id‘𝐷) ∘ (1st ‘(idfunc𝐷))) = ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))))
102 eqid 2622 . . . . . . . . . . 11 (Id‘𝑄) = (Id‘𝑄)
103 eqid 2622 . . . . . . . . . . 11 (Id‘𝐷) = (Id‘𝐷)
10481ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
10576, 102, 103, 104fucid 16631 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Id‘𝑄)‘(idfunc𝐷)) = ((Id‘𝐷) ∘ (1st ‘(idfunc𝐷))))
1064, 103cidfn 16340 . . . . . . . . . . . . . 14 (𝐷 ∈ Cat → (Id‘𝐷) Fn (Base‘𝐷))
10799, 106syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Id‘𝐷) Fn (Base‘𝐷))
108 dffn2 6047 . . . . . . . . . . . . 13 ((Id‘𝐷) Fn (Base‘𝐷) ↔ (Id‘𝐷):(Base‘𝐷)⟶V)
109107, 108sylib 208 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Id‘𝐷):(Base‘𝐷)⟶V)
110109feqmptd 6249 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Id‘𝐷) = (𝑧 ∈ (Base‘𝐷) ↦ ((Id‘𝐷)‘𝑧)))
111 fcoi1 6078 . . . . . . . . . . . 12 ((Id‘𝐷):(Base‘𝐷)⟶V → ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))) = (Id‘𝐷))
112109, 111syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))) = (Id‘𝐷))
1137ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐶 ∈ Cat)
114113adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
11599adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
116 simplrl 800 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
117116, 29sylan 488 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
118 simplrr 801 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
119 opelxpi 5148 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑦, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
120118, 119sylan 488 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑦, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
1212, 5, 6, 114, 115, 11, 117, 1202ndf2 16836 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩) = (2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩)))
122121oveqd 6667 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)) = (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)))
123 df-ov 6653 . . . . . . . . . . . . . . 15 (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)) = ((2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩)
124 simplr 792 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
125 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑧 ∈ (Base‘𝐷))
1264, 43, 103, 115, 125catidcl 16343 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((Id‘𝐷)‘𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧))
127 opelxpi 5148 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((Id‘𝐷)‘𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧)) → ⟨𝑓, ((Id‘𝐷)‘𝑧)⟩ ∈ ((𝑥(Hom ‘𝐶)𝑦) × (𝑧(Hom ‘𝐷)𝑧)))
128124, 126, 127syl2anc 693 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑓, ((Id‘𝐷)‘𝑧)⟩ ∈ ((𝑥(Hom ‘𝐶)𝑦) × (𝑧(Hom ‘𝐷)𝑧)))
129116adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
130118adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐶))
1312, 3, 4, 34, 43, 129, 125, 130, 125, 6xpchom2 16826 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩) = ((𝑥(Hom ‘𝐶)𝑦) × (𝑧(Hom ‘𝐷)𝑧)))
132128, 131eleqtrrd 2704 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑓, ((Id‘𝐷)‘𝑧)⟩ ∈ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))
133 fvres 6207 . . . . . . . . . . . . . . . 16 (⟨𝑓, ((Id‘𝐷)‘𝑧)⟩ ∈ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩) → ((2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩) = (2nd ‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩))
134132, 133syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩) = (2nd ‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩))
135123, 134syl5eq 2668 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)) = (2nd ‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩))
136 fvex 6201 . . . . . . . . . . . . . . 15 ((Id‘𝐷)‘𝑧) ∈ V
13750, 136op2nd 7177 . . . . . . . . . . . . . 14 (2nd ‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩) = ((Id‘𝐷)‘𝑧)
138135, 137syl6eq 2672 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)) = ((Id‘𝐷)‘𝑧))
139122, 138eqtrd 2656 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)) = ((Id‘𝐷)‘𝑧))
140139mpteq2dva 4744 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = (𝑧 ∈ (Base‘𝐷) ↦ ((Id‘𝐷)‘𝑧)))
141110, 112, 1403eqtr4rd 2667 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))))
142101, 105, 1413eqtr4rd 2667 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = ((Id‘𝑄)‘(idfunc𝐷)))
14368ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
144 simpr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
145 eqid 2622 . . . . . . . . . 10 ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓) = ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓)
14666, 3, 113, 99, 143, 4, 34, 103, 116, 118, 144, 145curf2 16869 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓) = (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))
14777ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑄 ∈ Cat)
14875, 147, 113, 79, 104, 83, 3, 116, 34, 102, 118, 144diag12 16884 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓) = ((Id‘𝑄)‘(idfunc𝐷)))
149142, 146, 1483eqtr4d 2666 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓) = ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓))
150149mpteq2dva 4744 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓)) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓)))
151 eqid 2622 . . . . . . . . . 10 (𝐷 Nat 𝐷) = (𝐷 Nat 𝐷)
15276, 151fuchom 16621 . . . . . . . . 9 (𝐷 Nat 𝐷) = (Hom ‘𝑄)
15390adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))(𝐶 Func 𝑄)(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))))
154 simprl 794 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
155 simprr 796 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
1563, 34, 152, 153, 154, 155funcf2 16528 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)(𝐷 Nat 𝐷)((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑦)))
157156feqmptd 6249 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓)))
15895adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))(𝐶 Func 𝑄)(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
1593, 34, 152, 158, 154, 155funcf2 16528 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥)(𝐷 Nat 𝐷)((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑦)))
160159feqmptd 6249 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓)))
161150, 157, 1603eqtr4d 2666 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦) = (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦))
1621613impb 1260 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦) = (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦))
163162mpt2eq3dva 6719 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)))
1643, 90funcfn2 16529 . . . . 5 (𝜑 → (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)))
165 fnov 6768 . . . . 5 ((2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)))
166164, 165sylib 208 . . . 4 (𝜑 → (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)))
1673, 95funcfn2 16529 . . . . 5 (𝜑 → (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)))
168 fnov 6768 . . . . 5 ((2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)))
169167, 168sylib 208 . . . 4 (𝜑 → (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)))
170163, 166, 1693eqtr4d 2666 . . 3 (𝜑 → (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
17198, 170opeq12d 4410 . 2 (𝜑 → ⟨(1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))), (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))⟩ = ⟨(1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))), (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))⟩)
172 1st2nd 7214 . . 3 ((Rel (𝐶 Func 𝑄) ∧ (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) ∈ (𝐶 Func 𝑄)) → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))), (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))⟩)
17387, 88, 172sylancr 695 . 2 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))), (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))⟩)
174 1st2nd 7214 . . 3 ((Rel (𝐶 Func 𝑄) ∧ ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) ∈ (𝐶 Func 𝑄)) → ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) = ⟨(1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))), (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))⟩)
17587, 93, 174sylancr 695 . 2 (𝜑 → ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) = ⟨(1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))), (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))⟩)
176171, 173, 1753eqtr4d 2666 1 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183   class class class wbr 4653  cmpt 4729   I cid 5023   × cxp 5112  cres 5116  ccom 5118  Rel wrel 5119   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  Basecbs 15857  Hom chom 15952  Catccat 16325  Idccid 16326   Func cfunc 16514  idfunccidfu 16515   Nat cnat 16601   FuncCat cfuc 16602   ×c cxpc 16808   2ndF c2ndf 16810   curryF ccurf 16850  Δfunccdiag 16852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-func 16518  df-idfu 16519  df-nat 16603  df-fuc 16604  df-xpc 16812  df-1stf 16813  df-2ndf 16814  df-curf 16854  df-diag 16856
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator