MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connhmph Structured version   Visualization version   GIF version

Theorem connhmph 21592
Description: Connectedness is a topological property. (Contributed by Jeff Hankins, 3-Jul-2009.)
Assertion
Ref Expression
connhmph (𝐽𝐾 → (𝐽 ∈ Conn → 𝐾 ∈ Conn))

Proof of Theorem connhmph
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 hmph 21579 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 3931 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 eqid 2622 . . . . . . 7 𝐽 = 𝐽
4 eqid 2622 . . . . . . 7 𝐾 = 𝐾
53, 4hmeof1o 21567 . . . . . 6 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽1-1-onto 𝐾)
6 f1ofo 6144 . . . . . 6 (𝑓: 𝐽1-1-onto 𝐾𝑓: 𝐽onto 𝐾)
75, 6syl 17 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽onto 𝐾)
8 hmeocn 21563 . . . . 5 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾))
94cnconn 21225 . . . . . . 7 ((𝐽 ∈ Conn ∧ 𝑓: 𝐽onto 𝐾𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn)
1093expb 1266 . . . . . 6 ((𝐽 ∈ Conn ∧ (𝑓: 𝐽onto 𝐾𝑓 ∈ (𝐽 Cn 𝐾))) → 𝐾 ∈ Conn)
1110expcom 451 . . . . 5 ((𝑓: 𝐽onto 𝐾𝑓 ∈ (𝐽 Cn 𝐾)) → (𝐽 ∈ Conn → 𝐾 ∈ Conn))
127, 8, 11syl2anc 693 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Conn → 𝐾 ∈ Conn))
1312exlimiv 1858 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Conn → 𝐾 ∈ Conn))
142, 13sylbi 207 . 2 ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Conn → 𝐾 ∈ Conn))
151, 14sylbi 207 1 (𝐽𝐾 → (𝐽 ∈ Conn → 𝐾 ∈ Conn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wex 1704  wcel 1990  wne 2794  c0 3915   cuni 4436   class class class wbr 4653  ontowfo 5886  1-1-ontowf1o 5887  (class class class)co 6650   Cn ccn 21028  Conncconn 21214  Homeochmeo 21556  chmph 21557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-map 7859  df-top 20699  df-topon 20716  df-cld 20823  df-cn 21031  df-conn 21215  df-hmeo 21558  df-hmph 21559
This theorem is referenced by:  xrconn  22748
  Copyright terms: Public domain W3C validator