![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ctex | Structured version Visualization version GIF version |
Description: A countable set is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
Ref | Expression |
---|---|
ctex | ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomi 7966 | . 2 ⊢ (𝐴 ≼ ω → ∃𝑓 𝑓:𝐴–1-1→ω) | |
2 | f1dm 6105 | . . . 4 ⊢ (𝑓:𝐴–1-1→ω → dom 𝑓 = 𝐴) | |
3 | vex 3203 | . . . . 5 ⊢ 𝑓 ∈ V | |
4 | 3 | dmex 7099 | . . . 4 ⊢ dom 𝑓 ∈ V |
5 | 2, 4 | syl6eqelr 2710 | . . 3 ⊢ (𝑓:𝐴–1-1→ω → 𝐴 ∈ V) |
6 | 5 | exlimiv 1858 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1→ω → 𝐴 ∈ V) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1704 ∈ wcel 1990 Vcvv 3200 class class class wbr 4653 dom cdm 5114 –1-1→wf1 5885 ωcom 7065 ≼ cdom 7953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-fn 5891 df-f 5892 df-f1 5893 df-dom 7957 |
This theorem is referenced by: cnvct 8033 ssct 8041 xpct 8839 dmct 9346 fimact 9357 fnct 9359 mptct 9360 cctop 20810 mptctf 29495 elsigagen2 30211 measvunilem 30275 measvunilem0 30276 measvuni 30277 sxbrsigalem1 30347 omssubadd 30362 carsggect 30380 pmeasadd 30387 mpct 39393 axccdom 39416 |
Copyright terms: Public domain | W3C validator |