MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnct Structured version   Visualization version   GIF version

Theorem fnct 9359
Description: If the domain of a function is countable, the function is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.)
Assertion
Ref Expression
fnct ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐹 ≼ ω)

Proof of Theorem fnct
StepHypRef Expression
1 ctex 7970 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
21adantl 482 . . . 4 ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐴 ∈ V)
3 fndm 5990 . . . . . . . 8 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
43eleq1d 2686 . . . . . . 7 (𝐹 Fn 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V))
54adantr 481 . . . . . 6 ((𝐹 Fn 𝐴𝐴 ≼ ω) → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V))
62, 5mpbird 247 . . . . 5 ((𝐹 Fn 𝐴𝐴 ≼ ω) → dom 𝐹 ∈ V)
7 fnfun 5988 . . . . . 6 (𝐹 Fn 𝐴 → Fun 𝐹)
87adantr 481 . . . . 5 ((𝐹 Fn 𝐴𝐴 ≼ ω) → Fun 𝐹)
9 funrnex 7133 . . . . 5 (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V))
106, 8, 9sylc 65 . . . 4 ((𝐹 Fn 𝐴𝐴 ≼ ω) → ran 𝐹 ∈ V)
11 xpexg 6960 . . . 4 ((𝐴 ∈ V ∧ ran 𝐹 ∈ V) → (𝐴 × ran 𝐹) ∈ V)
122, 10, 11syl2anc 693 . . 3 ((𝐹 Fn 𝐴𝐴 ≼ ω) → (𝐴 × ran 𝐹) ∈ V)
13 simpl 473 . . . . 5 ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐹 Fn 𝐴)
14 dffn3 6054 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
1513, 14sylib 208 . . . 4 ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐹:𝐴⟶ran 𝐹)
16 fssxp 6060 . . . 4 (𝐹:𝐴⟶ran 𝐹𝐹 ⊆ (𝐴 × ran 𝐹))
1715, 16syl 17 . . 3 ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐹 ⊆ (𝐴 × ran 𝐹))
18 ssdomg 8001 . . 3 ((𝐴 × ran 𝐹) ∈ V → (𝐹 ⊆ (𝐴 × ran 𝐹) → 𝐹 ≼ (𝐴 × ran 𝐹)))
1912, 17, 18sylc 65 . 2 ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐹 ≼ (𝐴 × ran 𝐹))
20 xpdom1g 8057 . . . . 5 ((ran 𝐹 ∈ V ∧ 𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ran 𝐹))
2110, 20sylancom 701 . . . 4 ((𝐹 Fn 𝐴𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ran 𝐹))
22 omex 8540 . . . . 5 ω ∈ V
23 fnrndomg 9358 . . . . . . 7 (𝐴 ∈ V → (𝐹 Fn 𝐴 → ran 𝐹𝐴))
242, 13, 23sylc 65 . . . . . 6 ((𝐹 Fn 𝐴𝐴 ≼ ω) → ran 𝐹𝐴)
25 domtr 8009 . . . . . 6 ((ran 𝐹𝐴𝐴 ≼ ω) → ran 𝐹 ≼ ω)
2624, 25sylancom 701 . . . . 5 ((𝐹 Fn 𝐴𝐴 ≼ ω) → ran 𝐹 ≼ ω)
27 xpdom2g 8056 . . . . 5 ((ω ∈ V ∧ ran 𝐹 ≼ ω) → (ω × ran 𝐹) ≼ (ω × ω))
2822, 26, 27sylancr 695 . . . 4 ((𝐹 Fn 𝐴𝐴 ≼ ω) → (ω × ran 𝐹) ≼ (ω × ω))
29 domtr 8009 . . . 4 (((𝐴 × ran 𝐹) ≼ (ω × ran 𝐹) ∧ (ω × ran 𝐹) ≼ (ω × ω)) → (𝐴 × ran 𝐹) ≼ (ω × ω))
3021, 28, 29syl2anc 693 . . 3 ((𝐹 Fn 𝐴𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ (ω × ω))
31 xpomen 8838 . . 3 (ω × ω) ≈ ω
32 domentr 8015 . . 3 (((𝐴 × ran 𝐹) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝐴 × ran 𝐹) ≼ ω)
3330, 31, 32sylancl 694 . 2 ((𝐹 Fn 𝐴𝐴 ≼ ω) → (𝐴 × ran 𝐹) ≼ ω)
34 domtr 8009 . 2 ((𝐹 ≼ (𝐴 × ran 𝐹) ∧ (𝐴 × ran 𝐹) ≼ ω) → 𝐹 ≼ ω)
3519, 33, 34syl2anc 693 1 ((𝐹 Fn 𝐴𝐴 ≼ ω) → 𝐹 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1990  Vcvv 3200  wss 3574   class class class wbr 4653   × cxp 5112  dom cdm 5114  ran crn 5115  Fun wfun 5882   Fn wfn 5883  wf 5884  ωcom 7065  cen 7952  cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939
This theorem is referenced by:  mptct  9360  mpt2cti  29493  mptctf  29495  omssubadd  30362
  Copyright terms: Public domain W3C validator