| Step | Hyp | Ref
| Expression |
| 1 | | carsggect.1 |
. . 3
⊢ (𝜑 → 𝐴 ≼ ω) |
| 2 | | 0ex 4790 |
. . . 4
⊢ ∅
∈ V |
| 3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → ∅ ∈
V) |
| 4 | | carsggect.0 |
. . 3
⊢ (𝜑 → ¬ ∅ ∈ 𝐴) |
| 5 | | padct 29497 |
. . 3
⊢ ((𝐴 ≼ ω ∧ ∅
∈ V ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) |
| 6 | 1, 3, 4, 5 | syl3anc 1326 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) |
| 7 | | nfv 1843 |
. . . . 5
⊢
Ⅎ𝑧(𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) |
| 8 | | simpr1 1067 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → 𝑓:ℕ⟶(𝐴 ∪ {∅})) |
| 9 | 8 | feqmptd 6249 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → 𝑓 = (𝑘 ∈ ℕ ↦ (𝑓‘𝑘))) |
| 10 | 9 | rneqd 5353 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ran 𝑓 = ran (𝑘 ∈ ℕ ↦ (𝑓‘𝑘))) |
| 11 | 7, 10 | esumeq1d 30097 |
. . . 4
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) = Σ*𝑧 ∈ ran (𝑘 ∈ ℕ ↦ (𝑓‘𝑘))(𝑀‘𝑧)) |
| 12 | | fvex 6201 |
. . . . . . . . . 10
⊢
(toCaraSiga‘𝑀)
∈ V |
| 13 | 12 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (toCaraSiga‘𝑀) ∈ V) |
| 14 | | carsggect.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) |
| 15 | 14 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → 𝐴 ⊆ (toCaraSiga‘𝑀)) |
| 16 | | carsgval.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| 17 | 16 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → 𝑂 ∈ 𝑉) |
| 18 | | carsgval.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| 19 | 18 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| 20 | | carsgsiga.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀‘∅) = 0) |
| 21 | 20 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝑀‘∅) = 0) |
| 22 | 17, 19, 21 | 0elcarsg 30369 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ∅ ∈
(toCaraSiga‘𝑀)) |
| 23 | 22 | snssd 4340 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → {∅} ⊆
(toCaraSiga‘𝑀)) |
| 24 | 15, 23 | unssd 3789 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝐴 ∪ {∅}) ⊆
(toCaraSiga‘𝑀)) |
| 25 | 13, 24 | ssexd 4805 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝐴 ∪ {∅}) ∈ V) |
| 26 | 19 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ (𝐴 ∪ {∅})) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| 27 | 16, 18 | carsgcl 30366 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂) |
| 28 | 14, 27 | sstrd 3613 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ⊆ 𝒫 𝑂) |
| 29 | 28 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → 𝐴 ⊆ 𝒫 𝑂) |
| 30 | | 0elpw 4834 |
. . . . . . . . . . . . 13
⊢ ∅
∈ 𝒫 𝑂 |
| 31 | 30 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ∅ ∈ 𝒫 𝑂) |
| 32 | 31 | snssd 4340 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → {∅} ⊆ 𝒫 𝑂) |
| 33 | 29, 32 | unssd 3789 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝐴 ∪ {∅}) ⊆ 𝒫 𝑂) |
| 34 | 33 | sselda 3603 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ (𝐴 ∪ {∅})) → 𝑧 ∈ 𝒫 𝑂) |
| 35 | 26, 34 | ffvelrnd 6360 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ (𝐴 ∪ {∅})) → (𝑀‘𝑧) ∈ (0[,]+∞)) |
| 36 | | frn 6053 |
. . . . . . . . 9
⊢ (𝑓:ℕ⟶(𝐴 ∪ {∅}) → ran
𝑓 ⊆ (𝐴 ∪
{∅})) |
| 37 | 8, 36 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ran 𝑓 ⊆ (𝐴 ∪ {∅})) |
| 38 | 7, 25, 35, 37 | esummono 30116 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) ≤ Σ*𝑧 ∈ (𝐴 ∪ {∅})(𝑀‘𝑧)) |
| 39 | | ctex 7970 |
. . . . . . . . . 10
⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| 40 | 1, 39 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ V) |
| 41 | 40 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → 𝐴 ∈ V) |
| 42 | 13, 23 | ssexd 4805 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → {∅} ∈
V) |
| 43 | 19 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ 𝐴) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| 44 | 29 | sselda 3603 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝒫 𝑂) |
| 45 | 43, 44 | ffvelrnd 6360 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ 𝐴) → (𝑀‘𝑧) ∈ (0[,]+∞)) |
| 46 | | elsni 4194 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ {∅} → 𝑧 = ∅) |
| 47 | 46 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ {∅}) → 𝑧 = ∅) |
| 48 | 47 | fveq2d 6195 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ {∅}) → (𝑀‘𝑧) = (𝑀‘∅)) |
| 49 | 21 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ {∅}) → (𝑀‘∅) = 0) |
| 50 | 48, 49 | eqtrd 2656 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ {∅}) → (𝑀‘𝑧) = 0) |
| 51 | 41, 42, 45, 50 | esumpad 30117 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ (𝐴 ∪ {∅})(𝑀‘𝑧) = Σ*𝑧 ∈ 𝐴(𝑀‘𝑧)) |
| 52 | 38, 51 | breqtrd 4679 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) ≤ Σ*𝑧 ∈ 𝐴(𝑀‘𝑧)) |
| 53 | 37, 24 | sstrd 3613 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ran 𝑓 ⊆ (toCaraSiga‘𝑀)) |
| 54 | | ssexg 4804 |
. . . . . . . 8
⊢ ((ran
𝑓 ⊆
(toCaraSiga‘𝑀) ∧
(toCaraSiga‘𝑀) ∈
V) → ran 𝑓 ∈
V) |
| 55 | 53, 12, 54 | sylancl 694 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ran 𝑓 ∈ V) |
| 56 | 19 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ ran 𝑓) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| 57 | 37, 33 | sstrd 3613 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ran 𝑓 ⊆ 𝒫 𝑂) |
| 58 | 57 | sselda 3603 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 ∈ 𝒫 𝑂) |
| 59 | 56, 58 | ffvelrnd 6360 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ ran 𝑓) → (𝑀‘𝑧) ∈ (0[,]+∞)) |
| 60 | | simpr2 1068 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → 𝐴 ⊆ ran 𝑓) |
| 61 | 7, 55, 59, 60 | esummono 30116 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧)) |
| 62 | 52, 61 | jca 554 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) ≤ Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ∧ Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧))) |
| 63 | | iccssxr 12256 |
. . . . . . 7
⊢
(0[,]+∞) ⊆ ℝ* |
| 64 | 59 | ralrimiva 2966 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ∀𝑧 ∈ ran 𝑓(𝑀‘𝑧) ∈ (0[,]+∞)) |
| 65 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑧ran
𝑓 |
| 66 | 65 | esumcl 30092 |
. . . . . . . 8
⊢ ((ran
𝑓 ∈ V ∧
∀𝑧 ∈ ran 𝑓(𝑀‘𝑧) ∈ (0[,]+∞)) →
Σ*𝑧 ∈
ran 𝑓(𝑀‘𝑧) ∈ (0[,]+∞)) |
| 67 | 55, 64, 66 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) ∈ (0[,]+∞)) |
| 68 | 63, 67 | sseldi 3601 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) ∈
ℝ*) |
| 69 | 45 | ralrimiva 2966 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ∀𝑧 ∈ 𝐴 (𝑀‘𝑧) ∈ (0[,]+∞)) |
| 70 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑧𝐴 |
| 71 | 70 | esumcl 30092 |
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧ ∀𝑧 ∈ 𝐴 (𝑀‘𝑧) ∈ (0[,]+∞)) →
Σ*𝑧 ∈
𝐴(𝑀‘𝑧) ∈ (0[,]+∞)) |
| 72 | 41, 69, 71 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ∈ (0[,]+∞)) |
| 73 | 63, 72 | sseldi 3601 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ∈
ℝ*) |
| 74 | | xrletri3 11985 |
. . . . . 6
⊢
((Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) ∈ ℝ* ∧
Σ*𝑧 ∈
𝐴(𝑀‘𝑧) ∈ ℝ*) →
(Σ*𝑧
∈ ran 𝑓(𝑀‘𝑧) = Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ↔ (Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) ≤ Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ∧ Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧)))) |
| 75 | 68, 73, 74 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) = Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ↔ (Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) ≤ Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ∧ Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧)))) |
| 76 | 62, 75 | mpbird 247 |
. . . 4
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) = Σ*𝑧 ∈ 𝐴(𝑀‘𝑧)) |
| 77 | | fveq2 6191 |
. . . . 5
⊢ (𝑧 = (𝑓‘𝑘) → (𝑀‘𝑧) = (𝑀‘(𝑓‘𝑘))) |
| 78 | | nnex 11026 |
. . . . . 6
⊢ ℕ
∈ V |
| 79 | 78 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ℕ ∈
V) |
| 80 | 19 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| 81 | 33 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) → (𝐴 ∪ {∅}) ⊆ 𝒫 𝑂) |
| 82 | 8 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) → 𝑓:ℕ⟶(𝐴 ∪ {∅})) |
| 83 | | simpr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
| 84 | 82, 83 | ffvelrnd 6360 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ (𝐴 ∪ {∅})) |
| 85 | 81, 84 | sseldd 3604 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ 𝒫 𝑂) |
| 86 | 80, 85 | ffvelrnd 6360 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) → (𝑀‘(𝑓‘𝑘)) ∈ (0[,]+∞)) |
| 87 | | simpr 477 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓‘𝑘) = ∅) → (𝑓‘𝑘) = ∅) |
| 88 | 87 | fveq2d 6195 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓‘𝑘) = ∅) → (𝑀‘(𝑓‘𝑘)) = (𝑀‘∅)) |
| 89 | 21 | ad2antrr 762 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓‘𝑘) = ∅) → (𝑀‘∅) = 0) |
| 90 | 88, 89 | eqtrd 2656 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓‘𝑘) = ∅) → (𝑀‘(𝑓‘𝑘)) = 0) |
| 91 | | cnvimass 5485 |
. . . . . . . 8
⊢ (◡𝑓 “ 𝐴) ⊆ dom 𝑓 |
| 92 | 91 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (◡𝑓 “ 𝐴) ⊆ dom 𝑓) |
| 93 | | fdm 6051 |
. . . . . . . 8
⊢ (𝑓:ℕ⟶(𝐴 ∪ {∅}) → dom
𝑓 =
ℕ) |
| 94 | 8, 93 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → dom 𝑓 = ℕ) |
| 95 | 92, 94 | sseqtrd 3641 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (◡𝑓 “ 𝐴) ⊆ ℕ) |
| 96 | | ffun 6048 |
. . . . . . . . . . 11
⊢ (𝑓:ℕ⟶(𝐴 ∪ {∅}) → Fun
𝑓) |
| 97 | 8, 96 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Fun 𝑓) |
| 98 | 97 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (◡𝑓 “ 𝐴))) → Fun 𝑓) |
| 99 | | difpreima 6343 |
. . . . . . . . . . . . 13
⊢ (Fun
𝑓 → (◡𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) = ((◡𝑓 “ (𝐴 ∪ {∅})) ∖ (◡𝑓 “ 𝐴))) |
| 100 | 8, 96, 99 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (◡𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) = ((◡𝑓 “ (𝐴 ∪ {∅})) ∖ (◡𝑓 “ 𝐴))) |
| 101 | | fimacnv 6347 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ⟶(𝐴 ∪ {∅}) → (◡𝑓 “ (𝐴 ∪ {∅})) =
ℕ) |
| 102 | 8, 101 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (◡𝑓 “ (𝐴 ∪ {∅})) =
ℕ) |
| 103 | 102 | difeq1d 3727 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ((◡𝑓 “ (𝐴 ∪ {∅})) ∖ (◡𝑓 “ 𝐴)) = (ℕ ∖ (◡𝑓 “ 𝐴))) |
| 104 | 100, 103 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (◡𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) = (ℕ ∖ (◡𝑓 “ 𝐴))) |
| 105 | | uncom 3757 |
. . . . . . . . . . . . . . . 16
⊢
({∅} ∪ 𝐴)
= (𝐴 ∪
{∅}) |
| 106 | 105 | difeq1i 3724 |
. . . . . . . . . . . . . . 15
⊢
(({∅} ∪ 𝐴)
∖ 𝐴) = ((𝐴 ∪ {∅}) ∖ 𝐴) |
| 107 | | difun2 4048 |
. . . . . . . . . . . . . . 15
⊢
(({∅} ∪ 𝐴)
∖ 𝐴) = ({∅}
∖ 𝐴) |
| 108 | 106, 107 | eqtr3i 2646 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∪ {∅}) ∖ 𝐴) = ({∅} ∖ 𝐴) |
| 109 | | difss 3737 |
. . . . . . . . . . . . . 14
⊢
({∅} ∖ 𝐴) ⊆ {∅} |
| 110 | 108, 109 | eqsstri 3635 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∪ {∅}) ∖ 𝐴) ⊆
{∅} |
| 111 | 110 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ((𝐴 ∪ {∅}) ∖ 𝐴) ⊆ {∅}) |
| 112 | | sspreima 29447 |
. . . . . . . . . . . 12
⊢ ((Fun
𝑓 ∧ ((𝐴 ∪ {∅}) ∖ 𝐴) ⊆ {∅}) → (◡𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) ⊆ (◡𝑓 “ {∅})) |
| 113 | 97, 111, 112 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (◡𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) ⊆ (◡𝑓 “ {∅})) |
| 114 | 104, 113 | eqsstr3d 3640 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (ℕ ∖ (◡𝑓 “ 𝐴)) ⊆ (◡𝑓 “ {∅})) |
| 115 | 114 | sselda 3603 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (◡𝑓 “ 𝐴))) → 𝑘 ∈ (◡𝑓 “ {∅})) |
| 116 | | fvimacnvi 6331 |
. . . . . . . . 9
⊢ ((Fun
𝑓 ∧ 𝑘 ∈ (◡𝑓 “ {∅})) → (𝑓‘𝑘) ∈ {∅}) |
| 117 | 98, 115, 116 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (◡𝑓 “ 𝐴))) → (𝑓‘𝑘) ∈ {∅}) |
| 118 | | elsni 4194 |
. . . . . . . 8
⊢ ((𝑓‘𝑘) ∈ {∅} → (𝑓‘𝑘) = ∅) |
| 119 | 117, 118 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (◡𝑓 “ 𝐴))) → (𝑓‘𝑘) = ∅) |
| 120 | 119 | ralrimiva 2966 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ∀𝑘 ∈ (ℕ ∖ (◡𝑓 “ 𝐴))(𝑓‘𝑘) = ∅) |
| 121 | | carsggect.3 |
. . . . . . . 8
⊢ (𝜑 → Disj 𝑦 ∈ 𝐴 𝑦) |
| 122 | 121 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Disj 𝑦 ∈ 𝐴 𝑦) |
| 123 | | simpr3 1069 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Fun (◡𝑓 ↾ 𝐴)) |
| 124 | | fresf1o 29433 |
. . . . . . . . . 10
⊢ ((Fun
𝑓 ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴)) → (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→𝐴) |
| 125 | 97, 60, 123, 124 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→𝐴) |
| 126 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑦 = ((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑘)) → 𝑦 = ((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑘)) |
| 127 | 125, 126 | disjrdx 29404 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (Disj 𝑘 ∈ (◡𝑓 “ 𝐴)((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑘) ↔ Disj 𝑦 ∈ 𝐴 𝑦)) |
| 128 | | fvres 6207 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (◡𝑓 “ 𝐴) → ((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑘) = (𝑓‘𝑘)) |
| 129 | 128 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ (◡𝑓 “ 𝐴)) → ((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑘) = (𝑓‘𝑘)) |
| 130 | 129 | disjeq2dv 4625 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (Disj 𝑘 ∈ (◡𝑓 “ 𝐴)((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑘) ↔ Disj 𝑘 ∈ (◡𝑓 “ 𝐴)(𝑓‘𝑘))) |
| 131 | 127, 130 | bitr3d 270 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (Disj 𝑦 ∈ 𝐴 𝑦 ↔ Disj 𝑘 ∈ (◡𝑓 “ 𝐴)(𝑓‘𝑘))) |
| 132 | 122, 131 | mpbid 222 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Disj 𝑘 ∈ (◡𝑓 “ 𝐴)(𝑓‘𝑘)) |
| 133 | | disjss3 4652 |
. . . . . . 7
⊢ (((◡𝑓 “ 𝐴) ⊆ ℕ ∧ ∀𝑘 ∈ (ℕ ∖ (◡𝑓 “ 𝐴))(𝑓‘𝑘) = ∅) → (Disj 𝑘 ∈ (◡𝑓 “ 𝐴)(𝑓‘𝑘) ↔ Disj 𝑘 ∈ ℕ (𝑓‘𝑘))) |
| 134 | 133 | biimpa 501 |
. . . . . 6
⊢ ((((◡𝑓 “ 𝐴) ⊆ ℕ ∧ ∀𝑘 ∈ (ℕ ∖ (◡𝑓 “ 𝐴))(𝑓‘𝑘) = ∅) ∧ Disj 𝑘 ∈ (◡𝑓 “ 𝐴)(𝑓‘𝑘)) → Disj 𝑘 ∈ ℕ (𝑓‘𝑘)) |
| 135 | 95, 120, 132, 134 | syl21anc 1325 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Disj 𝑘 ∈ ℕ (𝑓‘𝑘)) |
| 136 | 77, 79, 86, 85, 90, 135 | esumrnmpt2 30130 |
. . . 4
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ ran (𝑘 ∈ ℕ ↦ (𝑓‘𝑘))(𝑀‘𝑧) = Σ*𝑘 ∈ ℕ(𝑀‘(𝑓‘𝑘))) |
| 137 | 11, 76, 136 | 3eqtr3rd 2665 |
. . 3
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑘 ∈ ℕ(𝑀‘(𝑓‘𝑘)) = Σ*𝑧 ∈ 𝐴(𝑀‘𝑧)) |
| 138 | | uniiun 4573 |
. . . . . . 7
⊢ ∪ 𝐴 =
∪ 𝑥 ∈ 𝐴 𝑥 |
| 139 | 28 | sselda 3603 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝒫 𝑂) |
| 140 | 40, 139 | elpwiuncl 29359 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝑂) |
| 141 | 138, 140 | syl5eqel 2705 |
. . . . . 6
⊢ (𝜑 → ∪ 𝐴
∈ 𝒫 𝑂) |
| 142 | 141 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ∪
𝐴 ∈ 𝒫 𝑂) |
| 143 | 19, 142 | ffvelrnd 6360 |
. . . 4
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝑀‘∪ 𝐴) ∈
(0[,]+∞)) |
| 144 | | carsgsiga.2 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
| 145 | 144 | 3adant1r 1319 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
| 146 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝑀‘𝑦) = (𝑀‘𝑧)) |
| 147 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑧𝑥 |
| 148 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝑥 |
| 149 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑧(𝑀‘𝑦) |
| 150 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝑀‘𝑧) |
| 151 | 146, 147,
148, 149, 150 | cbvesum 30104 |
. . . . . . . . 9
⊢
Σ*𝑦
∈ 𝑥(𝑀‘𝑦) = Σ*𝑧 ∈ 𝑥(𝑀‘𝑧) |
| 152 | 145, 151 | syl6breq 4694 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑧 ∈ 𝑥(𝑀‘𝑧)) |
| 153 | | ffn 6045 |
. . . . . . . . . 10
⊢ (𝑓:ℕ⟶(𝐴 ∪ {∅}) → 𝑓 Fn ℕ) |
| 154 | | fz1ssnn 12372 |
. . . . . . . . . . 11
⊢
(1...𝑛) ⊆
ℕ |
| 155 | | fnssres 6004 |
. . . . . . . . . . 11
⊢ ((𝑓 Fn ℕ ∧ (1...𝑛) ⊆ ℕ) → (𝑓 ↾ (1...𝑛)) Fn (1...𝑛)) |
| 156 | 154, 155 | mpan2 707 |
. . . . . . . . . 10
⊢ (𝑓 Fn ℕ → (𝑓 ↾ (1...𝑛)) Fn (1...𝑛)) |
| 157 | 8, 153, 156 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝑓 ↾ (1...𝑛)) Fn (1...𝑛)) |
| 158 | | fzfi 12771 |
. . . . . . . . . 10
⊢
(1...𝑛) ∈
Fin |
| 159 | | fnfi 8238 |
. . . . . . . . . 10
⊢ (((𝑓 ↾ (1...𝑛)) Fn (1...𝑛) ∧ (1...𝑛) ∈ Fin) → (𝑓 ↾ (1...𝑛)) ∈ Fin) |
| 160 | 158, 159 | mpan2 707 |
. . . . . . . . 9
⊢ ((𝑓 ↾ (1...𝑛)) Fn (1...𝑛) → (𝑓 ↾ (1...𝑛)) ∈ Fin) |
| 161 | | rnfi 8249 |
. . . . . . . . 9
⊢ ((𝑓 ↾ (1...𝑛)) ∈ Fin → ran (𝑓 ↾ (1...𝑛)) ∈ Fin) |
| 162 | 157, 160,
161 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ran (𝑓 ↾ (1...𝑛)) ∈ Fin) |
| 163 | | resss 5422 |
. . . . . . . . . . 11
⊢ (𝑓 ↾ (1...𝑛)) ⊆ 𝑓 |
| 164 | | rnss 5354 |
. . . . . . . . . . 11
⊢ ((𝑓 ↾ (1...𝑛)) ⊆ 𝑓 → ran (𝑓 ↾ (1...𝑛)) ⊆ ran 𝑓) |
| 165 | 163, 164 | ax-mp 5 |
. . . . . . . . . 10
⊢ ran
(𝑓 ↾ (1...𝑛)) ⊆ ran 𝑓 |
| 166 | 165 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ ran 𝑓) |
| 167 | 166, 53 | sstrd 3613 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ (toCaraSiga‘𝑀)) |
| 168 | 166, 37 | sstrd 3613 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ (𝐴 ∪ {∅})) |
| 169 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧𝑦 |
| 170 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦𝑧 |
| 171 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) |
| 172 | 169, 170,
171 | cbvdisj 4630 |
. . . . . . . . . . . 12
⊢
(Disj 𝑦
∈ 𝐴 𝑦 ↔ Disj 𝑧 ∈ 𝐴 𝑧) |
| 173 | | disjun0 29408 |
. . . . . . . . . . . 12
⊢
(Disj 𝑧
∈ 𝐴 𝑧 → Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧) |
| 174 | 172, 173 | sylbi 207 |
. . . . . . . . . . 11
⊢
(Disj 𝑦
∈ 𝐴 𝑦 → Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧) |
| 175 | 121, 174 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧) |
| 176 | 175 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧) |
| 177 | | disjss1 4626 |
. . . . . . . . 9
⊢ (ran
(𝑓 ↾ (1...𝑛)) ⊆ (𝐴 ∪ {∅}) → (Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧 → Disj 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))𝑧)) |
| 178 | 168, 176,
177 | sylc 65 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Disj 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))𝑧) |
| 179 | | pwidg 4173 |
. . . . . . . . 9
⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ 𝒫 𝑂) |
| 180 | 17, 179 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → 𝑂 ∈ 𝒫 𝑂) |
| 181 | 17, 19, 21, 152, 162, 167, 178, 180 | carsgclctunlem1 30379 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝑀‘(𝑂 ∩ ∪ ran
(𝑓 ↾ (1...𝑛)))) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂 ∩ 𝑧))) |
| 182 | 181 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀‘(𝑂 ∩ ∪ ran
(𝑓 ↾ (1...𝑛)))) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂 ∩ 𝑧))) |
| 183 | 168 | unissd 4462 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ∪ ran
(𝑓 ↾ (1...𝑛)) ⊆ ∪ (𝐴
∪ {∅})) |
| 184 | | uniun 4456 |
. . . . . . . . . . . 12
⊢ ∪ (𝐴
∪ {∅}) = (∪ 𝐴 ∪ ∪
{∅}) |
| 185 | 2 | unisn 4451 |
. . . . . . . . . . . . 13
⊢ ∪ {∅} = ∅ |
| 186 | 185 | uneq2i 3764 |
. . . . . . . . . . . 12
⊢ (∪ 𝐴
∪ ∪ {∅}) = (∪
𝐴 ∪
∅) |
| 187 | | un0 3967 |
. . . . . . . . . . . 12
⊢ (∪ 𝐴
∪ ∅) = ∪ 𝐴 |
| 188 | 184, 186,
187 | 3eqtri 2648 |
. . . . . . . . . . 11
⊢ ∪ (𝐴
∪ {∅}) = ∪ 𝐴 |
| 189 | 183, 188 | syl6sseq 3651 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ∪ ran
(𝑓 ↾ (1...𝑛)) ⊆ ∪ 𝐴) |
| 190 | 189 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → ∪ ran (𝑓 ↾ (1...𝑛)) ⊆ ∪ 𝐴) |
| 191 | | uniss 4458 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ 𝒫 𝑂 → ∪ 𝐴
⊆ ∪ 𝒫 𝑂) |
| 192 | | unipw 4918 |
. . . . . . . . . . . 12
⊢ ∪ 𝒫 𝑂 = 𝑂 |
| 193 | 191, 192 | syl6sseq 3651 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ 𝒫 𝑂 → ∪ 𝐴
⊆ 𝑂) |
| 194 | 28, 193 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝐴
⊆ 𝑂) |
| 195 | 194 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → ∪ 𝐴
⊆ 𝑂) |
| 196 | 190, 195 | sstrd 3613 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → ∪ ran (𝑓 ↾ (1...𝑛)) ⊆ 𝑂) |
| 197 | | sseqin2 3817 |
. . . . . . . 8
⊢ (∪ ran (𝑓 ↾ (1...𝑛)) ⊆ 𝑂 ↔ (𝑂 ∩ ∪ ran
(𝑓 ↾ (1...𝑛))) = ∪ ran (𝑓 ↾ (1...𝑛))) |
| 198 | 196, 197 | sylib 208 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑂 ∩ ∪ ran
(𝑓 ↾ (1...𝑛))) = ∪ ran (𝑓 ↾ (1...𝑛))) |
| 199 | 198 | fveq2d 6195 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀‘(𝑂 ∩ ∪ ran
(𝑓 ↾ (1...𝑛)))) = (𝑀‘∪ ran
(𝑓 ↾ (1...𝑛)))) |
| 200 | | nfv 1843 |
. . . . . . . 8
⊢
Ⅎ𝑧((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) |
| 201 | 168 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑓 ↾ (1...𝑛)) ⊆ (𝐴 ∪ {∅})) |
| 202 | 28 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ 𝒫 𝑂) |
| 203 | 30 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → ∅ ∈
𝒫 𝑂) |
| 204 | 203 | snssd 4340 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → {∅} ⊆
𝒫 𝑂) |
| 205 | 202, 204 | unssd 3789 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝐴 ∪ {∅}) ⊆ 𝒫 𝑂) |
| 206 | 201, 205 | sstrd 3613 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑓 ↾ (1...𝑛)) ⊆ 𝒫 𝑂) |
| 207 | 206 | sselda 3603 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → 𝑧 ∈ 𝒫 𝑂) |
| 208 | 207 | elpwid 4170 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → 𝑧 ⊆ 𝑂) |
| 209 | | sseqin2 3817 |
. . . . . . . . . . 11
⊢ (𝑧 ⊆ 𝑂 ↔ (𝑂 ∩ 𝑧) = 𝑧) |
| 210 | 208, 209 | sylib 208 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → (𝑂 ∩ 𝑧) = 𝑧) |
| 211 | 210 | fveq2d 6195 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → (𝑀‘(𝑂 ∩ 𝑧)) = (𝑀‘𝑧)) |
| 212 | 211 | ralrimiva 2966 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → ∀𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂 ∩ 𝑧)) = (𝑀‘𝑧)) |
| 213 | 200, 212 | esumeq2d 30099 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) →
Σ*𝑧 ∈
ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂 ∩ 𝑧)) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘𝑧)) |
| 214 | 9 | reseq1d 5395 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝑓 ↾ (1...𝑛)) = ((𝑘 ∈ ℕ ↦ (𝑓‘𝑘)) ↾ (1...𝑛))) |
| 215 | 214 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑓 ↾ (1...𝑛)) = ((𝑘 ∈ ℕ ↦ (𝑓‘𝑘)) ↾ (1...𝑛))) |
| 216 | | resmpt 5449 |
. . . . . . . . . . . 12
⊢
((1...𝑛) ⊆
ℕ → ((𝑘 ∈
ℕ ↦ (𝑓‘𝑘)) ↾ (1...𝑛)) = (𝑘 ∈ (1...𝑛) ↦ (𝑓‘𝑘))) |
| 217 | 154, 216 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ↦ (𝑓‘𝑘)) ↾ (1...𝑛)) = (𝑘 ∈ (1...𝑛) ↦ (𝑓‘𝑘)) |
| 218 | 215, 217 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑓 ↾ (1...𝑛)) = (𝑘 ∈ (1...𝑛) ↦ (𝑓‘𝑘))) |
| 219 | 218 | eqcomd 2628 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ (1...𝑛) ↦ (𝑓‘𝑘)) = (𝑓 ↾ (1...𝑛))) |
| 220 | 219 | rneqd 5353 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ (𝑓‘𝑘)) = ran (𝑓 ↾ (1...𝑛))) |
| 221 | 200, 220 | esumeq1d 30097 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) →
Σ*𝑧 ∈
ran (𝑘 ∈ (1...𝑛) ↦ (𝑓‘𝑘))(𝑀‘𝑧) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘𝑧)) |
| 222 | 158 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin) |
| 223 | 19 | ad2antrr 762 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| 224 | 154 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆
ℕ) |
| 225 | 224 | sselda 3603 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ) |
| 226 | 85 | adantlr 751 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ 𝒫 𝑂) |
| 227 | 225, 226 | syldan 487 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑓‘𝑘) ∈ 𝒫 𝑂) |
| 228 | 223, 227 | ffvelrnd 6360 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑀‘(𝑓‘𝑘)) ∈ (0[,]+∞)) |
| 229 | | simpr 477 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓‘𝑘) = ∅) → (𝑓‘𝑘) = ∅) |
| 230 | 229 | fveq2d 6195 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓‘𝑘) = ∅) → (𝑀‘(𝑓‘𝑘)) = (𝑀‘∅)) |
| 231 | 21 | ad3antrrr 766 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓‘𝑘) = ∅) → (𝑀‘∅) = 0) |
| 232 | 230, 231 | eqtrd 2656 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓‘𝑘) = ∅) → (𝑀‘(𝑓‘𝑘)) = 0) |
| 233 | | disjss1 4626 |
. . . . . . . . . . 11
⊢
((1...𝑛) ⊆
ℕ → (Disj 𝑘 ∈ ℕ (𝑓‘𝑘) → Disj 𝑘 ∈ (1...𝑛)(𝑓‘𝑘))) |
| 234 | 154, 233 | ax-mp 5 |
. . . . . . . . . 10
⊢
(Disj 𝑘
∈ ℕ (𝑓‘𝑘) → Disj 𝑘 ∈ (1...𝑛)(𝑓‘𝑘)) |
| 235 | 135, 234 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Disj 𝑘 ∈ (1...𝑛)(𝑓‘𝑘)) |
| 236 | 235 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → Disj 𝑘 ∈ (1...𝑛)(𝑓‘𝑘)) |
| 237 | 77, 222, 228, 227, 232, 236 | esumrnmpt2 30130 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) →
Σ*𝑧 ∈
ran (𝑘 ∈ (1...𝑛) ↦ (𝑓‘𝑘))(𝑀‘𝑧) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝑓‘𝑘))) |
| 238 | 213, 221,
237 | 3eqtr2d 2662 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) →
Σ*𝑧 ∈
ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂 ∩ 𝑧)) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝑓‘𝑘))) |
| 239 | 182, 199,
238 | 3eqtr3d 2664 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀‘∪ ran
(𝑓 ↾ (1...𝑛))) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝑓‘𝑘))) |
| 240 | | carsggect.4 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) |
| 241 | 240 | 3adant1r 1319 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) |
| 242 | 17, 19, 189, 142, 241 | carsgmon 30376 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝑀‘∪ ran
(𝑓 ↾ (1...𝑛))) ≤ (𝑀‘∪ 𝐴)) |
| 243 | 242 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀‘∪ ran
(𝑓 ↾ (1...𝑛))) ≤ (𝑀‘∪ 𝐴)) |
| 244 | 239, 243 | eqbrtrrd 4677 |
. . . 4
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) →
Σ*𝑘 ∈
(1...𝑛)(𝑀‘(𝑓‘𝑘)) ≤ (𝑀‘∪ 𝐴)) |
| 245 | 143, 86, 244 | esumgect 30152 |
. . 3
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑘 ∈ ℕ(𝑀‘(𝑓‘𝑘)) ≤ (𝑀‘∪ 𝐴)) |
| 246 | 137, 245 | eqbrtrrd 4677 |
. 2
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ≤ (𝑀‘∪ 𝐴)) |
| 247 | 6, 246 | exlimddv 1863 |
1
⊢ (𝜑 → Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ≤ (𝑀‘∪ 𝐴)) |