| Step | Hyp | Ref
| Expression |
| 1 | | uniss 4458 |
. . . . . . . 8
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 2 | | ssrab2 3687 |
. . . . . . . . 9
⊢ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴 |
| 3 | | sspwuni 4611 |
. . . . . . . . 9
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴 ↔ ∪ {𝑥
∈ 𝒫 𝐴 ∣
((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴) |
| 4 | 2, 3 | mpbi 220 |
. . . . . . . 8
⊢ ∪ {𝑥
∈ 𝒫 𝐴 ∣
((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴 |
| 5 | 1, 4 | syl6ss 3615 |
. . . . . . 7
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
⊆ 𝐴) |
| 6 | | vuniex 6954 |
. . . . . . . 8
⊢ ∪ 𝑦
∈ V |
| 7 | 6 | elpw 4164 |
. . . . . . 7
⊢ (∪ 𝑦
∈ 𝒫 𝐴 ↔
∪ 𝑦 ⊆ 𝐴) |
| 8 | 5, 7 | sylibr 224 |
. . . . . 6
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ 𝒫 𝐴) |
| 9 | | uni0c 4464 |
. . . . . . . . . . 11
⊢ (∪ 𝑦 =
∅ ↔ ∀𝑧
∈ 𝑦 𝑧 = ∅) |
| 10 | 9 | notbii 310 |
. . . . . . . . . 10
⊢ (¬
∪ 𝑦 = ∅ ↔ ¬ ∀𝑧 ∈ 𝑦 𝑧 = ∅) |
| 11 | | rexnal 2995 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
𝑦 ¬ 𝑧 = ∅ ↔ ¬ ∀𝑧 ∈ 𝑦 𝑧 = ∅) |
| 12 | 10, 11 | bitr4i 267 |
. . . . . . . . 9
⊢ (¬
∪ 𝑦 = ∅ ↔ ∃𝑧 ∈ 𝑦 ¬ 𝑧 = ∅) |
| 13 | | ssel2 3598 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 14 | | difeq2 3722 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑧 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑧)) |
| 15 | 14 | breq1d 4663 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑧 → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ 𝑧) ≼ ω)) |
| 16 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑧 → (𝑥 = ∅ ↔ 𝑧 = ∅)) |
| 17 | 15, 16 | orbi12d 746 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → (((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅))) |
| 18 | 17 | elrab 3363 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅))) |
| 19 | 13, 18 | sylib 208 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅))) |
| 20 | 19 | simprd 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅)) |
| 21 | 20 | ord 392 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → (¬ (𝐴 ∖ 𝑧) ≼ ω → 𝑧 = ∅)) |
| 22 | 21 | con1d 139 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) → (¬ 𝑧 = ∅ → (𝐴 ∖ 𝑧) ≼ ω)) |
| 23 | 22 | imp 445 |
. . . . . . . . . . . 12
⊢ (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴 ∖ 𝑧) ≼ ω) |
| 24 | | ctex 7970 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∖ 𝑧) ≼ ω → (𝐴 ∖ 𝑧) ∈ V) |
| 25 | 24 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴 ∖ 𝑧) ≼ ω) → (𝐴 ∖ 𝑧) ∈ V) |
| 26 | | simpllr 799 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴 ∖ 𝑧) ≼ ω) → 𝑧 ∈ 𝑦) |
| 27 | | elssuni 4467 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑦 → 𝑧 ⊆ ∪ 𝑦) |
| 28 | | sscon 3744 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ⊆ ∪ 𝑦
→ (𝐴 ∖ ∪ 𝑦)
⊆ (𝐴 ∖ 𝑧)) |
| 29 | 26, 27, 28 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴 ∖ 𝑧) ≼ ω) → (𝐴 ∖ ∪ 𝑦) ⊆ (𝐴 ∖ 𝑧)) |
| 30 | | ssdomg 8001 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∖ 𝑧) ∈ V → ((𝐴 ∖ ∪ 𝑦) ⊆ (𝐴 ∖ 𝑧) → (𝐴 ∖ ∪ 𝑦) ≼ (𝐴 ∖ 𝑧))) |
| 31 | 25, 29, 30 | sylc 65 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴 ∖ 𝑧) ≼ ω) → (𝐴 ∖ ∪ 𝑦) ≼ (𝐴 ∖ 𝑧)) |
| 32 | | domtr 8009 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∖ ∪ 𝑦)
≼ (𝐴 ∖ 𝑧) ∧ (𝐴 ∖ 𝑧) ≼ ω) → (𝐴 ∖ ∪ 𝑦) ≼
ω) |
| 33 | 31, 32 | sylancom 701 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴 ∖ 𝑧) ≼ ω) → (𝐴 ∖ ∪ 𝑦) ≼
ω) |
| 34 | 23, 33 | mpdan 702 |
. . . . . . . . . . 11
⊢ (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ 𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴 ∖ ∪ 𝑦) ≼
ω) |
| 35 | 34 | exp31 630 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → (𝑧 ∈ 𝑦 → (¬ 𝑧 = ∅ → (𝐴 ∖ ∪ 𝑦) ≼
ω))) |
| 36 | 35 | rexlimdv 3030 |
. . . . . . . . 9
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → (∃𝑧 ∈ 𝑦 ¬ 𝑧 = ∅ → (𝐴 ∖ ∪ 𝑦) ≼
ω)) |
| 37 | 12, 36 | syl5bi 232 |
. . . . . . . 8
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → (¬ ∪ 𝑦 =
∅ → (𝐴 ∖
∪ 𝑦) ≼ ω)) |
| 38 | 37 | con1d 139 |
. . . . . . 7
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → (¬ (𝐴 ∖ ∪ 𝑦) ≼ ω → ∪ 𝑦 =
∅)) |
| 39 | 38 | orrd 393 |
. . . . . 6
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ((𝐴 ∖ ∪ 𝑦) ≼ ω ∨ ∪ 𝑦 =
∅)) |
| 40 | | difeq2 3722 |
. . . . . . . . 9
⊢ (𝑥 = ∪
𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ ∪ 𝑦)) |
| 41 | 40 | breq1d 4663 |
. . . . . . . 8
⊢ (𝑥 = ∪
𝑦 → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ ∪ 𝑦) ≼
ω)) |
| 42 | | eqeq1 2626 |
. . . . . . . 8
⊢ (𝑥 = ∪
𝑦 → (𝑥 = ∅ ↔ ∪ 𝑦 =
∅)) |
| 43 | 41, 42 | orbi12d 746 |
. . . . . . 7
⊢ (𝑥 = ∪
𝑦 → (((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ ∪ 𝑦) ≼ ω ∨ ∪ 𝑦 =
∅))) |
| 44 | 43 | elrab 3363 |
. . . . . 6
⊢ (∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ (∪ 𝑦
∈ 𝒫 𝐴 ∧
((𝐴 ∖ ∪ 𝑦)
≼ ω ∨ ∪ 𝑦 = ∅))) |
| 45 | 8, 39, 44 | sylanbrc 698 |
. . . . 5
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 46 | 45 | ax-gen 1722 |
. . . 4
⊢
∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 47 | | difeq2 3722 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑦)) |
| 48 | 47 | breq1d 4663 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ 𝑦) ≼ ω)) |
| 49 | | eqeq1 2626 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) |
| 50 | 48, 49 | orbi12d 746 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ 𝑦) ≼ ω ∨ 𝑦 = ∅))) |
| 51 | 50 | elrab 3363 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑦) ≼ ω ∨ 𝑦 = ∅))) |
| 52 | | ssinss1 3841 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ 𝐴 → (𝑦 ∩ 𝑧) ⊆ 𝐴) |
| 53 | | vex 3203 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
| 54 | 53 | elpw 4164 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) |
| 55 | 53 | inex1 4799 |
. . . . . . . . . . 11
⊢ (𝑦 ∩ 𝑧) ∈ V |
| 56 | 55 | elpw 4164 |
. . . . . . . . . 10
⊢ ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ↔ (𝑦 ∩ 𝑧) ⊆ 𝐴) |
| 57 | 52, 54, 56 | 3imtr4i 281 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝒫 𝐴 → (𝑦 ∩ 𝑧) ∈ 𝒫 𝐴) |
| 58 | 57 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅))) → (𝑦 ∩ 𝑧) ∈ 𝒫 𝐴) |
| 59 | | difindi 3881 |
. . . . . . . . . . . 12
⊢ (𝐴 ∖ (𝑦 ∩ 𝑧)) = ((𝐴 ∖ 𝑦) ∪ (𝐴 ∖ 𝑧)) |
| 60 | | unctb 9027 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∖ 𝑦) ≼ ω ∧ (𝐴 ∖ 𝑧) ≼ ω) → ((𝐴 ∖ 𝑦) ∪ (𝐴 ∖ 𝑧)) ≼ ω) |
| 61 | 59, 60 | syl5eqbr 4688 |
. . . . . . . . . . 11
⊢ (((𝐴 ∖ 𝑦) ≼ ω ∧ (𝐴 ∖ 𝑧) ≼ ω) → (𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω) |
| 62 | 61 | orcd 407 |
. . . . . . . . . 10
⊢ (((𝐴 ∖ 𝑦) ≼ ω ∧ (𝐴 ∖ 𝑧) ≼ ω) → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅)) |
| 63 | | ineq1 3807 |
. . . . . . . . . . . 12
⊢ (𝑦 = ∅ → (𝑦 ∩ 𝑧) = (∅ ∩ 𝑧)) |
| 64 | | 0in 3969 |
. . . . . . . . . . . 12
⊢ (∅
∩ 𝑧) =
∅ |
| 65 | 63, 64 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → (𝑦 ∩ 𝑧) = ∅) |
| 66 | 65 | olcd 408 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅)) |
| 67 | | ineq2 3808 |
. . . . . . . . . . . 12
⊢ (𝑧 = ∅ → (𝑦 ∩ 𝑧) = (𝑦 ∩ ∅)) |
| 68 | | in0 3968 |
. . . . . . . . . . . 12
⊢ (𝑦 ∩ ∅) =
∅ |
| 69 | 67, 68 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ (𝑧 = ∅ → (𝑦 ∩ 𝑧) = ∅) |
| 70 | 69 | olcd 408 |
. . . . . . . . . 10
⊢ (𝑧 = ∅ → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅)) |
| 71 | 62, 66, 70 | ccase2 989 |
. . . . . . . . 9
⊢ ((((𝐴 ∖ 𝑦) ≼ ω ∨ 𝑦 = ∅) ∧ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅)) → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅)) |
| 72 | 71 | ad2ant2l 782 |
. . . . . . . 8
⊢ (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅))) → ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅)) |
| 73 | 58, 72 | jca 554 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ 𝑧) ≼ ω ∨ 𝑧 = ∅))) → ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅))) |
| 74 | 51, 18, 73 | syl2anb 496 |
. . . . . 6
⊢ ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) → ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅))) |
| 75 | | difeq2 3722 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝐴 ∖ 𝑥) = (𝐴 ∖ (𝑦 ∩ 𝑧))) |
| 76 | 75 | breq1d 4663 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∩ 𝑧) → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω)) |
| 77 | | eqeq1 2626 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝑥 = ∅ ↔ (𝑦 ∩ 𝑧) = ∅)) |
| 78 | 76, 77 | orbi12d 746 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅))) |
| 79 | 78 | elrab 3363 |
. . . . . 6
⊢ ((𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦 ∩ 𝑧)) ≼ ω ∨ (𝑦 ∩ 𝑧) = ∅))) |
| 80 | 74, 79 | sylibr 224 |
. . . . 5
⊢ ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) → (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 81 | 80 | rgen2a 2977 |
. . . 4
⊢
∀𝑦 ∈
{𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} |
| 82 | 46, 81 | pm3.2i 471 |
. . 3
⊢
(∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 83 | | pwexg 4850 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| 84 | | rabexg 4812 |
. . . 4
⊢
(𝒫 𝐴 ∈
V → {𝑥 ∈
𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ V) |
| 85 | | istopg 20700 |
. . . 4
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}))) |
| 86 | 83, 84, 85 | 3syl 18 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}))) |
| 87 | 82, 86 | mpbiri 248 |
. 2
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top) |
| 88 | | pwidg 4173 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
| 89 | | omex 8540 |
. . . . . . . 8
⊢ ω
∈ V |
| 90 | 89 | 0dom 8090 |
. . . . . . 7
⊢ ∅
≼ ω |
| 91 | 90 | orci 405 |
. . . . . 6
⊢ (∅
≼ ω ∨ 𝐴 =
∅) |
| 92 | 91 | a1i 11 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (∅ ≼ ω ∨ 𝐴 = ∅)) |
| 93 | | difeq2 3722 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝐴)) |
| 94 | | difid 3948 |
. . . . . . . . 9
⊢ (𝐴 ∖ 𝐴) = ∅ |
| 95 | 93, 94 | syl6eq 2672 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝐴 ∖ 𝑥) = ∅) |
| 96 | 95 | breq1d 4663 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝐴 ∖ 𝑥) ≼ ω ↔ ∅ ≼
ω)) |
| 97 | | eqeq1 2626 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) |
| 98 | 96, 97 | orbi12d 746 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ (∅ ≼ ω
∨ 𝐴 =
∅))) |
| 99 | 98 | elrab 3363 |
. . . . 5
⊢ (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ (𝐴 ∈ 𝒫 𝐴 ∧ (∅ ≼ ω ∨ 𝐴 = ∅))) |
| 100 | 88, 92, 99 | sylanbrc 698 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 101 | | elssuni 4467 |
. . . 4
⊢ (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝐴 ⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 102 | 100, 101 | syl 17 |
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 103 | 4 | a1i 11 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴) |
| 104 | 102, 103 | eqssd 3620 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 = ∪ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)}) |
| 105 | | istopon 20717 |
. 2
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ∧ 𝐴 = ∪
{𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)})) |
| 106 | 87, 104, 105 | sylanbrc 698 |
1
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) |