MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cctop Structured version   Visualization version   GIF version

Theorem cctop 20810
Description: The countable complement topology on a set 𝐴. Example 4 in [Munkres] p. 77. (Contributed by FL, 23-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
cctop (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem cctop
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4458 . . . . . . . 8 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
2 ssrab2 3687 . . . . . . . . 9 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴
3 sspwuni 4611 . . . . . . . . 9 ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴)
42, 3mpbi 220 . . . . . . . 8 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴
51, 4syl6ss 3615 . . . . . . 7 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦𝐴)
6 vuniex 6954 . . . . . . . 8 𝑦 ∈ V
76elpw 4164 . . . . . . 7 ( 𝑦 ∈ 𝒫 𝐴 𝑦𝐴)
85, 7sylibr 224 . . . . . 6 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ 𝒫 𝐴)
9 uni0c 4464 . . . . . . . . . . 11 ( 𝑦 = ∅ ↔ ∀𝑧𝑦 𝑧 = ∅)
109notbii 310 . . . . . . . . . 10 𝑦 = ∅ ↔ ¬ ∀𝑧𝑦 𝑧 = ∅)
11 rexnal 2995 . . . . . . . . . 10 (∃𝑧𝑦 ¬ 𝑧 = ∅ ↔ ¬ ∀𝑧𝑦 𝑧 = ∅)
1210, 11bitr4i 267 . . . . . . . . 9 𝑦 = ∅ ↔ ∃𝑧𝑦 ¬ 𝑧 = ∅)
13 ssel2 3598 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
14 difeq2 3722 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (𝐴𝑥) = (𝐴𝑧))
1514breq1d 4663 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → ((𝐴𝑥) ≼ ω ↔ (𝐴𝑧) ≼ ω))
16 eqeq1 2626 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝑥 = ∅ ↔ 𝑧 = ∅))
1715, 16orbi12d 746 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅)))
1817elrab 3363 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅)))
1913, 18sylib 208 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅)))
2019simprd 479 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅))
2120ord 392 . . . . . . . . . . . . . 14 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → (¬ (𝐴𝑧) ≼ ω → 𝑧 = ∅))
2221con1d 139 . . . . . . . . . . . . 13 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → (¬ 𝑧 = ∅ → (𝐴𝑧) ≼ ω))
2322imp 445 . . . . . . . . . . . 12 (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴𝑧) ≼ ω)
24 ctex 7970 . . . . . . . . . . . . . . 15 ((𝐴𝑧) ≼ ω → (𝐴𝑧) ∈ V)
2524adantl 482 . . . . . . . . . . . . . 14 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → (𝐴𝑧) ∈ V)
26 simpllr 799 . . . . . . . . . . . . . . 15 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → 𝑧𝑦)
27 elssuni 4467 . . . . . . . . . . . . . . 15 (𝑧𝑦𝑧 𝑦)
28 sscon 3744 . . . . . . . . . . . . . . 15 (𝑧 𝑦 → (𝐴 𝑦) ⊆ (𝐴𝑧))
2926, 27, 283syl 18 . . . . . . . . . . . . . 14 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → (𝐴 𝑦) ⊆ (𝐴𝑧))
30 ssdomg 8001 . . . . . . . . . . . . . 14 ((𝐴𝑧) ∈ V → ((𝐴 𝑦) ⊆ (𝐴𝑧) → (𝐴 𝑦) ≼ (𝐴𝑧)))
3125, 29, 30sylc 65 . . . . . . . . . . . . 13 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → (𝐴 𝑦) ≼ (𝐴𝑧))
32 domtr 8009 . . . . . . . . . . . . 13 (((𝐴 𝑦) ≼ (𝐴𝑧) ∧ (𝐴𝑧) ≼ ω) → (𝐴 𝑦) ≼ ω)
3331, 32sylancom 701 . . . . . . . . . . . 12 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → (𝐴 𝑦) ≼ ω)
3423, 33mpdan 702 . . . . . . . . . . 11 (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴 𝑦) ≼ ω)
3534exp31 630 . . . . . . . . . 10 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → (𝑧𝑦 → (¬ 𝑧 = ∅ → (𝐴 𝑦) ≼ ω)))
3635rexlimdv 3030 . . . . . . . . 9 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → (∃𝑧𝑦 ¬ 𝑧 = ∅ → (𝐴 𝑦) ≼ ω))
3712, 36syl5bi 232 . . . . . . . 8 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → (¬ 𝑦 = ∅ → (𝐴 𝑦) ≼ ω))
3837con1d 139 . . . . . . 7 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → (¬ (𝐴 𝑦) ≼ ω → 𝑦 = ∅))
3938orrd 393 . . . . . 6 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → ((𝐴 𝑦) ≼ ω ∨ 𝑦 = ∅))
40 difeq2 3722 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴 𝑦))
4140breq1d 4663 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐴𝑥) ≼ ω ↔ (𝐴 𝑦) ≼ ω))
42 eqeq1 2626 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
4341, 42orbi12d 746 . . . . . . 7 (𝑥 = 𝑦 → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 𝑦) ≼ ω ∨ 𝑦 = ∅)))
4443elrab 3363 . . . . . 6 ( 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 𝑦) ≼ ω ∨ 𝑦 = ∅)))
458, 39, 44sylanbrc 698 . . . . 5 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
4645ax-gen 1722 . . . 4 𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
47 difeq2 3722 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
4847breq1d 4663 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐴𝑥) ≼ ω ↔ (𝐴𝑦) ≼ ω))
49 eqeq1 2626 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
5048, 49orbi12d 746 . . . . . . . 8 (𝑥 = 𝑦 → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)))
5150elrab 3363 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)))
52 ssinss1 3841 . . . . . . . . . 10 (𝑦𝐴 → (𝑦𝑧) ⊆ 𝐴)
53 vex 3203 . . . . . . . . . . 11 𝑦 ∈ V
5453elpw 4164 . . . . . . . . . 10 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
5553inex1 4799 . . . . . . . . . . 11 (𝑦𝑧) ∈ V
5655elpw 4164 . . . . . . . . . 10 ((𝑦𝑧) ∈ 𝒫 𝐴 ↔ (𝑦𝑧) ⊆ 𝐴)
5752, 54, 563imtr4i 281 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝐴 → (𝑦𝑧) ∈ 𝒫 𝐴)
5857ad2antrr 762 . . . . . . . 8 (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅))) → (𝑦𝑧) ∈ 𝒫 𝐴)
59 difindi 3881 . . . . . . . . . . . 12 (𝐴 ∖ (𝑦𝑧)) = ((𝐴𝑦) ∪ (𝐴𝑧))
60 unctb 9027 . . . . . . . . . . . 12 (((𝐴𝑦) ≼ ω ∧ (𝐴𝑧) ≼ ω) → ((𝐴𝑦) ∪ (𝐴𝑧)) ≼ ω)
6159, 60syl5eqbr 4688 . . . . . . . . . . 11 (((𝐴𝑦) ≼ ω ∧ (𝐴𝑧) ≼ ω) → (𝐴 ∖ (𝑦𝑧)) ≼ ω)
6261orcd 407 . . . . . . . . . 10 (((𝐴𝑦) ≼ ω ∧ (𝐴𝑧) ≼ ω) → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
63 ineq1 3807 . . . . . . . . . . . 12 (𝑦 = ∅ → (𝑦𝑧) = (∅ ∩ 𝑧))
64 0in 3969 . . . . . . . . . . . 12 (∅ ∩ 𝑧) = ∅
6563, 64syl6eq 2672 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑦𝑧) = ∅)
6665olcd 408 . . . . . . . . . 10 (𝑦 = ∅ → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
67 ineq2 3808 . . . . . . . . . . . 12 (𝑧 = ∅ → (𝑦𝑧) = (𝑦 ∩ ∅))
68 in0 3968 . . . . . . . . . . . 12 (𝑦 ∩ ∅) = ∅
6967, 68syl6eq 2672 . . . . . . . . . . 11 (𝑧 = ∅ → (𝑦𝑧) = ∅)
7069olcd 408 . . . . . . . . . 10 (𝑧 = ∅ → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
7162, 66, 70ccase2 989 . . . . . . . . 9 ((((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅) ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅)) → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
7271ad2ant2l 782 . . . . . . . 8 (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅))) → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
7358, 72jca 554 . . . . . . 7 (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅))) → ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅)))
7451, 18, 73syl2anb 496 . . . . . 6 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) → ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅)))
75 difeq2 3722 . . . . . . . . 9 (𝑥 = (𝑦𝑧) → (𝐴𝑥) = (𝐴 ∖ (𝑦𝑧)))
7675breq1d 4663 . . . . . . . 8 (𝑥 = (𝑦𝑧) → ((𝐴𝑥) ≼ ω ↔ (𝐴 ∖ (𝑦𝑧)) ≼ ω))
77 eqeq1 2626 . . . . . . . 8 (𝑥 = (𝑦𝑧) → (𝑥 = ∅ ↔ (𝑦𝑧) = ∅))
7876, 77orbi12d 746 . . . . . . 7 (𝑥 = (𝑦𝑧) → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅)))
7978elrab 3363 . . . . . 6 ((𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅)))
8074, 79sylibr 224 . . . . 5 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
8180rgen2a 2977 . . . 4 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}
8246, 81pm3.2i 471 . . 3 (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
83 pwexg 4850 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
84 rabexg 4812 . . . 4 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ V)
85 istopg 20700 . . . 4 ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})))
8683, 84, 853syl 18 . . 3 (𝐴𝑉 → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})))
8782, 86mpbiri 248 . 2 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top)
88 pwidg 4173 . . . . 5 (𝐴𝑉𝐴 ∈ 𝒫 𝐴)
89 omex 8540 . . . . . . . 8 ω ∈ V
90890dom 8090 . . . . . . 7 ∅ ≼ ω
9190orci 405 . . . . . 6 (∅ ≼ ω ∨ 𝐴 = ∅)
9291a1i 11 . . . . 5 (𝐴𝑉 → (∅ ≼ ω ∨ 𝐴 = ∅))
93 difeq2 3722 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐴𝑥) = (𝐴𝐴))
94 difid 3948 . . . . . . . . 9 (𝐴𝐴) = ∅
9593, 94syl6eq 2672 . . . . . . . 8 (𝑥 = 𝐴 → (𝐴𝑥) = ∅)
9695breq1d 4663 . . . . . . 7 (𝑥 = 𝐴 → ((𝐴𝑥) ≼ ω ↔ ∅ ≼ ω))
97 eqeq1 2626 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
9896, 97orbi12d 746 . . . . . 6 (𝑥 = 𝐴 → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ (∅ ≼ ω ∨ 𝐴 = ∅)))
9998elrab 3363 . . . . 5 (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ (𝐴 ∈ 𝒫 𝐴 ∧ (∅ ≼ ω ∨ 𝐴 = ∅)))
10088, 92, 99sylanbrc 698 . . . 4 (𝐴𝑉𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
101 elssuni 4467 . . . 4 (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
102100, 101syl 17 . . 3 (𝐴𝑉𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
1034a1i 11 . . 3 (𝐴𝑉 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴)
104102, 103eqssd 3620 . 2 (𝐴𝑉𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
105 istopon 20717 . 2 ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ∧ 𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}))
10687, 104, 105sylanbrc 698 1 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  wal 1481   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158   cuni 4436   class class class wbr 4653  cfv 5888  ωcom 7065  cdom 7953  Topctop 20698  TopOnctopon 20715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-cda 8990  df-top 20699  df-topon 20716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator