Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measvuni Structured version   Visualization version   GIF version

Theorem measvuni 30277
Description: The measure of a countable disjoint union is the sum of the measures. This theorem uses a collection rather than a set of subsets of 𝑆. (Contributed by Thierry Arnoux, 7-Mar-2017.)
Assertion
Ref Expression
measvuni ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑆
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem measvuni
StepHypRef Expression
1 simp1 1061 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑀 ∈ (measures‘𝑆))
2 rabid 3116 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} ↔ (𝑥𝐴𝐵 ∈ {∅}))
32simprbi 480 . . . . . . 7 (𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} → 𝐵 ∈ {∅})
43adantl 482 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝐵 ∈ {∅})
54ralrimiva 2966 . . . . 5 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 ∈ {∅})
653ad2ant1 1082 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 ∈ {∅})
7 ssrab2 3687 . . . . . . 7 {𝑥𝐴𝐵 ∈ {∅}} ⊆ 𝐴
8 ssct 8041 . . . . . . 7 (({𝑥𝐴𝐵 ∈ {∅}} ⊆ 𝐴𝐴 ≼ ω) → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
97, 8mpan 706 . . . . . 6 (𝐴 ≼ ω → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
109adantr 481 . . . . 5 ((𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵) → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
11103ad2ant3 1084 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
12 simp3r 1090 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥𝐴 𝐵)
13 nfrab1 3122 . . . . . 6 𝑥{𝑥𝐴𝐵 ∈ {∅}}
14 nfcv 2764 . . . . . 6 𝑥𝐴
1513, 14disjss1f 29386 . . . . 5 ({𝑥𝐴𝐵 ∈ {∅}} ⊆ 𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵))
167, 12, 15mpsyl 68 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵)
1713measvunilem0 30276 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 ∈ {∅} ∧ ({𝑥𝐴𝐵 ∈ {∅}} ≼ ω ∧ Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵))
181, 6, 11, 16, 17syl112anc 1330 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵))
19 rabid 3116 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ↔ (𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})))
2019simprbi 480 . . . . . . 7 (𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} → 𝐵 ∈ (𝑆 ∖ {∅}))
2120adantl 482 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵 ∈ (𝑆 ∖ {∅}))
2221ralrimiva 2966 . . . . 5 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ (𝑆 ∖ {∅}))
23223ad2ant1 1082 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ (𝑆 ∖ {∅}))
24 ssrab2 3687 . . . . . . 7 {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ⊆ 𝐴
25 ssct 8041 . . . . . . 7 (({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ⊆ 𝐴𝐴 ≼ ω) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
2624, 25mpan 706 . . . . . 6 (𝐴 ≼ ω → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
2726adantr 481 . . . . 5 ((𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
28273ad2ant3 1084 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
29 nfrab1 3122 . . . . . 6 𝑥{𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}
3029, 14disjss1f 29386 . . . . 5 ({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ⊆ 𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵))
3124, 12, 30mpsyl 68 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)
3229measvunilem 30275 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ (𝑆 ∖ {∅}) ∧ ({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω ∧ Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵))
331, 23, 28, 31, 32syl112anc 1330 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵))
3418, 33oveq12d 6668 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) = (Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵) +𝑒 Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵)))
35 nfv 1843 . . . . . . 7 𝑥 𝑀 ∈ (measures‘𝑆)
36 nfra1 2941 . . . . . . 7 𝑥𝑥𝐴 𝐵𝑆
37 nfv 1843 . . . . . . . 8 𝑥 𝐴 ≼ ω
38 nfdisj1 4633 . . . . . . . 8 𝑥Disj 𝑥𝐴 𝐵
3937, 38nfan 1828 . . . . . . 7 𝑥(𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)
4035, 36, 39nf3an 1831 . . . . . 6 𝑥(𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵))
4113, 29nfun 3769 . . . . . 6 𝑥({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})
42 simp2 1062 . . . . . . . . 9 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥𝐴 𝐵𝑆)
43 rabid2 3118 . . . . . . . . 9 (𝐴 = {𝑥𝐴𝐵𝑆} ↔ ∀𝑥𝐴 𝐵𝑆)
4442, 43sylibr 224 . . . . . . . 8 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 = {𝑥𝐴𝐵𝑆})
45 elun 3753 . . . . . . . . . . 11 (𝐵 ∈ ({∅} ∪ (𝑆 ∖ {∅})) ↔ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅})))
46 measbase 30260 . . . . . . . . . . . . . 14 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
47 0elsiga 30177 . . . . . . . . . . . . . 14 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
48 snssi 4339 . . . . . . . . . . . . . 14 (∅ ∈ 𝑆 → {∅} ⊆ 𝑆)
4946, 47, 483syl 18 . . . . . . . . . . . . 13 (𝑀 ∈ (measures‘𝑆) → {∅} ⊆ 𝑆)
50 undif 4049 . . . . . . . . . . . . 13 ({∅} ⊆ 𝑆 ↔ ({∅} ∪ (𝑆 ∖ {∅})) = 𝑆)
5149, 50sylib 208 . . . . . . . . . . . 12 (𝑀 ∈ (measures‘𝑆) → ({∅} ∪ (𝑆 ∖ {∅})) = 𝑆)
5251eleq2d 2687 . . . . . . . . . . 11 (𝑀 ∈ (measures‘𝑆) → (𝐵 ∈ ({∅} ∪ (𝑆 ∖ {∅})) ↔ 𝐵𝑆))
5345, 52syl5bbr 274 . . . . . . . . . 10 (𝑀 ∈ (measures‘𝑆) → ((𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅})) ↔ 𝐵𝑆))
5453rabbidv 3189 . . . . . . . . 9 (𝑀 ∈ (measures‘𝑆) → {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))} = {𝑥𝐴𝐵𝑆})
55543ad2ant1 1082 . . . . . . . 8 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))} = {𝑥𝐴𝐵𝑆})
5644, 55eqtr4d 2659 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 = {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))})
57 unrab 3898 . . . . . . 7 ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))}
5856, 57syl6eqr 2674 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 = ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}))
59 eqidd 2623 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐵 = 𝐵)
6040, 14, 41, 58, 59iuneq12df 4544 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥𝐴 𝐵 = 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵)
6160fveq2d 6195 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = (𝑀 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵))
62 iunxun 4605 . . . . 5 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵 = ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)
6362fveq2i 6194 . . . 4 (𝑀 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵) = (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵))
6461, 63syl6eq 2672 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
65463ad2ant1 1082 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑆 ran sigAlgebra)
6647adantr 481 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐵 ∈ {∅}) → ∅ ∈ 𝑆)
67 elsni 4194 . . . . . . . . . . 11 (𝐵 ∈ {∅} → 𝐵 = ∅)
6867eleq1d 2686 . . . . . . . . . 10 (𝐵 ∈ {∅} → (𝐵𝑆 ↔ ∅ ∈ 𝑆))
6968adantl 482 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐵 ∈ {∅}) → (𝐵𝑆 ↔ ∅ ∈ 𝑆))
7066, 69mpbird 247 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐵 ∈ {∅}) → 𝐵𝑆)
7146, 3, 70syl2an 494 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝐵𝑆)
7271ralrimiva 2966 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
73723ad2ant1 1082 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
7413sigaclcuni 30181 . . . . 5 ((𝑆 ran sigAlgebra ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆 ∧ {𝑥𝐴𝐵 ∈ {∅}} ≼ ω) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
7565, 73, 11, 74syl3anc 1326 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
7621eldifad 3586 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵𝑆)
7776ralrimiva 2966 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
78773ad2ant1 1082 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
7929sigaclcuni 30181 . . . . 5 ((𝑆 ran sigAlgebra ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆 ∧ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
8065, 78, 28, 79syl3anc 1326 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
813, 67syl 17 . . . . . . 7 (𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} → 𝐵 = ∅)
8281iuneq2i 4539 . . . . . 6 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}∅
83 iun0 4576 . . . . . 6 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}∅ = ∅
8482, 83eqtri 2644 . . . . 5 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = ∅
85 ineq1 3807 . . . . . 6 ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = ∅ → ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = (∅ ∩ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵))
86 0in 3969 . . . . . 6 (∅ ∩ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅
8785, 86syl6eq 2672 . . . . 5 ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = ∅ → ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅)
8884, 87mp1i 13 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅)
89 measun 30274 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆) ∧ ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅) → (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) = ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
901, 75, 80, 88, 89syl121anc 1331 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) = ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
9164, 90eqtrd 2656 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
9240, 58esumeq1d 30097 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴(𝑀𝐵) = Σ*𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})(𝑀𝐵))
93 ctex 7970 . . . . 5 ({𝑥𝐴𝐵 ∈ {∅}} ≼ ω → {𝑥𝐴𝐵 ∈ {∅}} ∈ V)
9411, 93syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ {∅}} ∈ V)
95 ctex 7970 . . . . 5 ({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ∈ V)
9628, 95syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ∈ V)
97 inrab 3899 . . . . . 6 ({𝑥𝐴𝐵 ∈ {∅}} ∩ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))}
98 noel 3919 . . . . . . . . . 10 ¬ 𝐵 ∈ ∅
99 disjdif 4040 . . . . . . . . . . 11 ({∅} ∩ (𝑆 ∖ {∅})) = ∅
10099eleq2i 2693 . . . . . . . . . 10 (𝐵 ∈ ({∅} ∩ (𝑆 ∖ {∅})) ↔ 𝐵 ∈ ∅)
10198, 100mtbir 313 . . . . . . . . 9 ¬ 𝐵 ∈ ({∅} ∩ (𝑆 ∖ {∅}))
102 elin 3796 . . . . . . . . 9 (𝐵 ∈ ({∅} ∩ (𝑆 ∖ {∅})) ↔ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅})))
103101, 102mtbi 312 . . . . . . . 8 ¬ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))
104103rgenw 2924 . . . . . . 7 𝑥𝐴 ¬ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))
105 rabeq0 3957 . . . . . . 7 ({𝑥𝐴 ∣ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅})))
106104, 105mpbir 221 . . . . . 6 {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))} = ∅
10797, 106eqtri 2644 . . . . 5 ({𝑥𝐴𝐵 ∈ {∅}} ∩ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = ∅
108107a1i 11 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ({𝑥𝐴𝐵 ∈ {∅}} ∩ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = ∅)
1091adantr 481 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝑀 ∈ (measures‘𝑆))
1101, 71sylan 488 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝐵𝑆)
111 measvxrge0 30268 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
112109, 110, 111syl2anc 693 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → (𝑀𝐵) ∈ (0[,]+∞))
1131adantr 481 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝑀 ∈ (measures‘𝑆))
11420adantl 482 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵 ∈ (𝑆 ∖ {∅}))
115114eldifad 3586 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵𝑆)
116113, 115, 111syl2anc 693 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → (𝑀𝐵) ∈ (0[,]+∞))
11740, 13, 29, 94, 96, 108, 112, 116esumsplit 30115 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})(𝑀𝐵) = (Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵) +𝑒 Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵)))
11892, 117eqtrd 2656 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴(𝑀𝐵) = (Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵) +𝑒 Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵)))
11934, 91, 1183eqtr4d 2666 1 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177   cuni 4436   ciun 4520  Disj wdisj 4620   class class class wbr 4653  ran crn 5115  cfv 5888  (class class class)co 6650  ωcom 7065  cdom 7953  0cc0 9936  +∞cpnf 10071   +𝑒 cxad 11944  [,]cicc 12178  Σ*cesum 30089  sigAlgebracsiga 30170  measurescmeas 30258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-ordt 16161  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-ps 17200  df-tsr 17201  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-abv 18817  df-lmod 18865  df-scaf 18866  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tmd 21876  df-tgp 21877  df-tsms 21930  df-trg 21963  df-xms 22125  df-ms 22126  df-tms 22127  df-nm 22387  df-ngp 22388  df-nrg 22390  df-nlm 22391  df-ii 22680  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-esum 30090  df-siga 30171  df-meas 30259
This theorem is referenced by:  measiuns  30280  measinblem  30283  sibfof  30402  dstrvprob  30533
  Copyright terms: Public domain W3C validator