Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrexch Structured version   Visualization version   GIF version

Theorem cvrexch 34706
Description: A Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of [Kalmbach] p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (cvexchi 29228 analog.) (Contributed by NM, 18-Nov-2011.)
Hypotheses
Ref Expression
cvrexch.b 𝐵 = (Base‘𝐾)
cvrexch.j = (join‘𝐾)
cvrexch.m = (meet‘𝐾)
cvrexch.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrexch ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))

Proof of Theorem cvrexch
StepHypRef Expression
1 cvrexch.b . . 3 𝐵 = (Base‘𝐾)
2 cvrexch.j . . 3 = (join‘𝐾)
3 cvrexch.m . . 3 = (meet‘𝐾)
4 cvrexch.c . . 3 𝐶 = ( ⋖ ‘𝐾)
51, 2, 3, 4cvrexchlem 34705 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
6 simp1 1061 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
7 hlop 34649 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
873ad2ant1 1082 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
9 simp3 1063 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
10 eqid 2622 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
111, 10opoccl 34481 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
128, 9, 11syl2anc 693 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
13 simp2 1062 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
141, 10opoccl 34481 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
158, 13, 14syl2anc 693 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
161, 2, 3, 4cvrexchlem 34705 . . . . 5 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))𝐶((oc‘𝐾)‘𝑋) → ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))))
176, 12, 15, 16syl3anc 1326 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))𝐶((oc‘𝐾)‘𝑋) → ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))))
18 hlol 34648 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
191, 2, 3, 10oldmj1 34508 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2018, 19syl3an1 1359 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
21 hllat 34650 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
22213ad2ant1 1082 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
231, 3latmcom 17075 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
2422, 15, 12, 23syl3anc 1326 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
2520, 24eqtrd 2656 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
2625breq1d 4663 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋) ↔ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))𝐶((oc‘𝐾)‘𝑋)))
271, 2, 3, 10oldmm1 34504 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2818, 27syl3an1 1359 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
291, 2latjcom 17059 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
3022, 15, 12, 29syl3anc 1326 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
3128, 30eqtrd 2656 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
3231breq2d 4665 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌)) ↔ ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))))
3317, 26, 323imtr4d 283 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋) → ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌))))
341, 2latjcl 17051 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
3521, 34syl3an1 1359 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
361, 10, 4cvrcon3b 34564 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑋𝐶(𝑋 𝑌) ↔ ((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋)))
378, 13, 35, 36syl3anc 1326 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶(𝑋 𝑌) ↔ ((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋)))
381, 3latmcl 17052 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
3921, 38syl3an1 1359 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
401, 10, 4cvrcon3b 34564 . . . 4 ((𝐾 ∈ OP ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌))))
418, 39, 9, 40syl3anc 1326 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌))))
4233, 37, 413imtr4d 283 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶(𝑋 𝑌) → (𝑋 𝑌)𝐶𝑌))
435, 42impbid 202 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  occoc 15949  joincjn 16944  meetcmee 16945  Latclat 17045  OPcops 34459  OLcol 34461  ccvr 34549  HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638
This theorem is referenced by:  cvrat3  34728  2lplnmN  34845  2llnmj  34846  2llnm2N  34854  2lplnm2N  34907  2lplnmj  34908  lhpmcvr  35309
  Copyright terms: Public domain W3C validator