![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpt2fun | Structured version Visualization version GIF version |
Description: The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012.) |
Ref | Expression |
---|---|
mpt2fun.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
mpt2fun | ⊢ Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3 2643 | . . . . . 6 ⊢ ((𝑧 = 𝐶 ∧ 𝑤 = 𝐶) → 𝑧 = 𝑤) | |
2 | 1 | ad2ant2l 782 | . . . . 5 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶)) → 𝑧 = 𝑤) |
3 | 2 | gen2 1723 | . . . 4 ⊢ ∀𝑧∀𝑤((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶)) → 𝑧 = 𝑤) |
4 | eqeq1 2626 | . . . . . 6 ⊢ (𝑧 = 𝑤 → (𝑧 = 𝐶 ↔ 𝑤 = 𝐶)) | |
5 | 4 | anbi2d 740 | . . . . 5 ⊢ (𝑧 = 𝑤 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶))) |
6 | 5 | mo4 2517 | . . . 4 ⊢ (∃*𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ∀𝑧∀𝑤((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶)) → 𝑧 = 𝑤)) |
7 | 3, 6 | mpbir 221 | . . 3 ⊢ ∃*𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
8 | 7 | funoprab 6760 | . 2 ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
9 | mpt2fun.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
10 | df-mpt2 6655 | . . . 4 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
11 | 9, 10 | eqtri 2644 | . . 3 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
12 | 11 | funeqi 5909 | . 2 ⊢ (Fun 𝐹 ↔ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)}) |
13 | 8, 12 | mpbir 221 | 1 ⊢ Fun 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∀wal 1481 = wceq 1483 ∈ wcel 1990 ∃*wmo 2471 Fun wfun 5882 {coprab 6651 ↦ cmpt2 6652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-fun 5890 df-oprab 6654 df-mpt2 6655 |
This theorem is referenced by: ofexg 6901 mpt2exxg 7244 mpt2curryd 7395 imasvscafn 16197 coapm 16721 oppglsm 18057 gsum2d2lem 18372 evlslem2 19512 xkococnlem 21462 ucnima 22085 ucnprima 22086 fmucnd 22096 smatrcl 29862 smatlem 29863 txomap 29901 tpr2rico 29958 elunirnmbfm 30315 scutf 31919 relowlpssretop 33212 aovmpt4g 41281 mpt2exxg2 42116 |
Copyright terms: Public domain | W3C validator |