Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmscut Structured version   Visualization version   GIF version

Theorem dmscut 31918
Description: The domain of the surreal cut operation is all separated surreal sets. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
dmscut dom |s = <<s

Proof of Theorem dmscut
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmoprab 6741 . 2 dom {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))}
2 df-scut 31899 . . . 4 |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
3 df-mpt2 6655 . . . 4 (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))) = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))}
42, 3eqtri 2644 . . 3 |s = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))}
54dmeqi 5325 . 2 dom |s = dom {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))}
6 df-sslt 31897 . . . . 5 <<s = {⟨𝑎, 𝑏⟩ ∣ (𝑎 No 𝑏 No ∧ ∀𝑥𝑎𝑦𝑏 𝑥 <s 𝑦)}
76relopabi 5245 . . . 4 Rel <<s
8 19.42v 1918 . . . . . 6 (∃𝑐((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))) ↔ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ ∃𝑐 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))))
9 ssltss1 31903 . . . . . . . . 9 (𝑎 <<s 𝑏𝑎 No )
10 vex 3203 . . . . . . . . . 10 𝑎 ∈ V
1110elpw 4164 . . . . . . . . 9 (𝑎 ∈ 𝒫 No 𝑎 No )
129, 11sylibr 224 . . . . . . . 8 (𝑎 <<s 𝑏𝑎 ∈ 𝒫 No )
1312pm4.71ri 665 . . . . . . 7 (𝑎 <<s 𝑏 ↔ (𝑎 ∈ 𝒫 No 𝑎 <<s 𝑏))
14 vex 3203 . . . . . . . . . 10 𝑏 ∈ V
1510, 14elimasn 5490 . . . . . . . . 9 (𝑏 ∈ ( <<s “ {𝑎}) ↔ ⟨𝑎, 𝑏⟩ ∈ <<s )
16 df-br 4654 . . . . . . . . 9 (𝑎 <<s 𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ <<s )
1715, 16bitr4i 267 . . . . . . . 8 (𝑏 ∈ ( <<s “ {𝑎}) ↔ 𝑎 <<s 𝑏)
1817anbi2i 730 . . . . . . 7 ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ↔ (𝑎 ∈ 𝒫 No 𝑎 <<s 𝑏))
19 riotaex 6615 . . . . . . . . 9 (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) ∈ V
20 isset 3207 . . . . . . . . 9 ((𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) ∈ V ↔ ∃𝑐 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
2119, 20mpbi 220 . . . . . . . 8 𝑐 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))
2221biantru 526 . . . . . . 7 ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ↔ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ ∃𝑐 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))))
2313, 18, 223bitr2i 288 . . . . . 6 (𝑎 <<s 𝑏 ↔ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ ∃𝑐 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))))
248, 23, 163bitr2ri 289 . . . . 5 (⟨𝑎, 𝑏⟩ ∈ <<s ↔ ∃𝑐((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))))
2524a1i 11 . . . 4 (⊤ → (⟨𝑎, 𝑏⟩ ∈ <<s ↔ ∃𝑐((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))))
267, 25opabbi2dv 5271 . . 3 (⊤ → <<s = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))})
2726trud 1493 . 2 <<s = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))}
281, 5, 273eqtr4i 2654 1 dom |s = <<s
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wtru 1484  wex 1704  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  wss 3574  𝒫 cpw 4158  {csn 4177  cop 4183   cint 4475   class class class wbr 4653  {copab 4712  dom cdm 5114  cima 5117  cfv 5888  crio 6610  {coprab 6651  cmpt2 6652   No csur 31793   <s cslt 31794   bday cbday 31795   <<s csslt 31896   |s cscut 31898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-riota 6611  df-oprab 6654  df-mpt2 6655  df-sslt 31897  df-scut 31899
This theorem is referenced by:  scutf  31919  madeval2  31936
  Copyright terms: Public domain W3C validator