| Step | Hyp | Ref
| Expression |
| 1 | | dfac3 8944 |
. . 3
⊢
(CHOICE ↔ ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| 2 | | nfra1 2941 |
. . . . . . 7
⊢
Ⅎ𝑧∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
| 3 | | rsp 2929 |
. . . . . . . . . . . . 13
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → (𝑧 ∈ 𝑥 → (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
| 4 | | equid 1939 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑧 = 𝑧 |
| 5 | | neeq1 2856 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 = 𝑧 → (𝑢 ≠ ∅ ↔ 𝑧 ≠ ∅)) |
| 6 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 = 𝑧 → (𝑢 = 𝑧 ↔ 𝑧 = 𝑧)) |
| 7 | 5, 6 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 = 𝑧 → ((𝑢 ≠ ∅ ∧ 𝑢 = 𝑧) ↔ (𝑧 ≠ ∅ ∧ 𝑧 = 𝑧))) |
| 8 | 7 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ 𝑥 ∧ (𝑧 ≠ ∅ ∧ 𝑧 = 𝑧)) → ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑢 = 𝑧)) |
| 9 | 4, 8 | mpanr2 720 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅) → ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑢 = 𝑧)) |
| 10 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 = 𝑧 → (𝑓‘𝑢) = (𝑓‘𝑧)) |
| 11 | 10 | preq1d 4274 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 = 𝑧 → {(𝑓‘𝑢), 𝑢} = {(𝑓‘𝑧), 𝑢}) |
| 12 | | preq2 4269 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 = 𝑧 → {(𝑓‘𝑧), 𝑢} = {(𝑓‘𝑧), 𝑧}) |
| 13 | 11, 12 | eqtr2d 2657 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 = 𝑧 → {(𝑓‘𝑧), 𝑧} = {(𝑓‘𝑢), 𝑢}) |
| 14 | 13 | anim2i 593 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ≠ ∅ ∧ 𝑢 = 𝑧) → (𝑢 ≠ ∅ ∧ {(𝑓‘𝑧), 𝑧} = {(𝑓‘𝑢), 𝑢})) |
| 15 | 14 | reximi 3011 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑢 ∈
𝑥 (𝑢 ≠ ∅ ∧ 𝑢 = 𝑧) → ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ {(𝑓‘𝑧), 𝑧} = {(𝑓‘𝑢), 𝑢})) |
| 16 | 9, 15 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅) → ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ {(𝑓‘𝑧), 𝑧} = {(𝑓‘𝑢), 𝑢})) |
| 17 | | prex 4909 |
. . . . . . . . . . . . . . . . . 18
⊢ {(𝑓‘𝑧), 𝑧} ∈ V |
| 18 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = {(𝑓‘𝑧), 𝑧} → (𝑔 = {(𝑓‘𝑢), 𝑢} ↔ {(𝑓‘𝑧), 𝑧} = {(𝑓‘𝑢), 𝑢})) |
| 19 | 18 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = {(𝑓‘𝑧), 𝑧} → ((𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢}) ↔ (𝑢 ≠ ∅ ∧ {(𝑓‘𝑧), 𝑧} = {(𝑓‘𝑢), 𝑢}))) |
| 20 | 19 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = {(𝑓‘𝑧), 𝑧} → (∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢}) ↔ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ {(𝑓‘𝑧), 𝑧} = {(𝑓‘𝑢), 𝑢}))) |
| 21 | 17, 20 | elab 3350 |
. . . . . . . . . . . . . . . . 17
⊢ ({(𝑓‘𝑧), 𝑧} ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} ↔ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ {(𝑓‘𝑧), 𝑧} = {(𝑓‘𝑢), 𝑢})) |
| 22 | 16, 21 | sylibr 224 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅) → {(𝑓‘𝑧), 𝑧} ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})}) |
| 23 | | vex 3203 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑧 ∈ V |
| 24 | 23 | prid2 4298 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑧 ∈ {(𝑓‘𝑧), 𝑧} |
| 25 | | fvex 6201 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓‘𝑧) ∈ V |
| 26 | 25 | prid1 4297 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓‘𝑧) ∈ {(𝑓‘𝑧), 𝑧} |
| 27 | 24, 26 | pm3.2i 471 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ {(𝑓‘𝑧), 𝑧} ∧ (𝑓‘𝑧) ∈ {(𝑓‘𝑧), 𝑧}) |
| 28 | | eleq2 2690 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = {(𝑓‘𝑧), 𝑧} → (𝑧 ∈ 𝑣 ↔ 𝑧 ∈ {(𝑓‘𝑧), 𝑧})) |
| 29 | | eleq2 2690 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = {(𝑓‘𝑧), 𝑧} → ((𝑓‘𝑧) ∈ 𝑣 ↔ (𝑓‘𝑧) ∈ {(𝑓‘𝑧), 𝑧})) |
| 30 | 28, 29 | anbi12d 747 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = {(𝑓‘𝑧), 𝑧} → ((𝑧 ∈ 𝑣 ∧ (𝑓‘𝑧) ∈ 𝑣) ↔ (𝑧 ∈ {(𝑓‘𝑧), 𝑧} ∧ (𝑓‘𝑧) ∈ {(𝑓‘𝑧), 𝑧}))) |
| 31 | 30 | rspcev 3309 |
. . . . . . . . . . . . . . . 16
⊢ (({(𝑓‘𝑧), 𝑧} ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} ∧ (𝑧 ∈ {(𝑓‘𝑧), 𝑧} ∧ (𝑓‘𝑧) ∈ {(𝑓‘𝑧), 𝑧})) → ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ (𝑓‘𝑧) ∈ 𝑣)) |
| 32 | 22, 27, 31 | sylancl 694 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅) → ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ (𝑓‘𝑧) ∈ 𝑣)) |
| 33 | | eleq1 2689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = (𝑓‘𝑧) → (𝑤 ∈ 𝑧 ↔ (𝑓‘𝑧) ∈ 𝑧)) |
| 34 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = (𝑓‘𝑧) → (𝑤 ∈ 𝑣 ↔ (𝑓‘𝑧) ∈ 𝑣)) |
| 35 | 34 | anbi2d 740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = (𝑓‘𝑧) → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ (𝑧 ∈ 𝑣 ∧ (𝑓‘𝑧) ∈ 𝑣))) |
| 36 | 35 | rexbidv 3052 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = (𝑓‘𝑧) → (∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ (𝑓‘𝑧) ∈ 𝑣))) |
| 37 | 33, 36 | anbi12d 747 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = (𝑓‘𝑧) → ((𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) ↔ ((𝑓‘𝑧) ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ (𝑓‘𝑧) ∈ 𝑣)))) |
| 38 | 25, 37 | spcev 3300 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓‘𝑧) ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ (𝑓‘𝑧) ∈ 𝑣)) → ∃𝑤(𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 39 | 32, 38 | sylan2 491 |
. . . . . . . . . . . . . 14
⊢ (((𝑓‘𝑧) ∈ 𝑧 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅)) → ∃𝑤(𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 40 | 39 | ex 450 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑧) ∈ 𝑧 → ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅) → ∃𝑤(𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)))) |
| 41 | 3, 40 | syl8 76 |
. . . . . . . . . . . 12
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → (𝑧 ∈ 𝑥 → (𝑧 ≠ ∅ → ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅) → ∃𝑤(𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)))))) |
| 42 | 41 | impd 447 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅) → ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅) → ∃𝑤(𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))))) |
| 43 | 42 | pm2.43d 53 |
. . . . . . . . . 10
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅) → ∃𝑤(𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)))) |
| 44 | | df-rex 2918 |
. . . . . . . . . . . . . 14
⊢
(∃𝑣 ∈
{𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ ∃𝑣(𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} ∧ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 45 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑣 ∈ V |
| 46 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = 𝑣 → (𝑔 = {(𝑓‘𝑢), 𝑢} ↔ 𝑣 = {(𝑓‘𝑢), 𝑢})) |
| 47 | 46 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = 𝑣 → ((𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢}) ↔ (𝑢 ≠ ∅ ∧ 𝑣 = {(𝑓‘𝑢), 𝑢}))) |
| 48 | 47 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = 𝑣 → (∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢}) ↔ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑣 = {(𝑓‘𝑢), 𝑢}))) |
| 49 | 45, 48 | elab 3350 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} ↔ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑣 = {(𝑓‘𝑢), 𝑢})) |
| 50 | | neeq1 2856 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = 𝑢 → (𝑧 ≠ ∅ ↔ 𝑢 ≠ ∅)) |
| 51 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = 𝑢 → (𝑓‘𝑧) = (𝑓‘𝑢)) |
| 52 | 51 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = 𝑢 → ((𝑓‘𝑧) ∈ 𝑧 ↔ (𝑓‘𝑢) ∈ 𝑧)) |
| 53 | | eleq2 2690 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = 𝑢 → ((𝑓‘𝑢) ∈ 𝑧 ↔ (𝑓‘𝑢) ∈ 𝑢)) |
| 54 | 52, 53 | bitrd 268 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = 𝑢 → ((𝑓‘𝑧) ∈ 𝑧 ↔ (𝑓‘𝑢) ∈ 𝑢)) |
| 55 | 50, 54 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 = 𝑢 → ((𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ (𝑢 ≠ ∅ → (𝑓‘𝑢) ∈ 𝑢))) |
| 56 | 55 | rspccv 3306 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → (𝑢 ∈ 𝑥 → (𝑢 ≠ ∅ → (𝑓‘𝑢) ∈ 𝑢))) |
| 57 | | elirrv 8504 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ¬
𝑤 ∈ 𝑤 |
| 58 | | eleq2 2690 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑤 ↔ 𝑤 ∈ 𝑧)) |
| 59 | 57, 58 | mtbii 316 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑤 = 𝑧 → ¬ 𝑤 ∈ 𝑧) |
| 60 | 59 | con2i 134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑤 ∈ 𝑧 → ¬ 𝑤 = 𝑧) |
| 61 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ 𝑤 ∈ V |
| 62 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑓‘𝑢) ∈ V |
| 63 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ 𝑢 ∈ V |
| 64 | 61, 23, 62, 63 | prel12 4383 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬
𝑤 = 𝑧 → ({𝑤, 𝑧} = {(𝑓‘𝑢), 𝑢} ↔ (𝑤 ∈ {(𝑓‘𝑢), 𝑢} ∧ 𝑧 ∈ {(𝑓‘𝑢), 𝑢}))) |
| 65 | | ancom 466 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑤 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣) ↔ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
| 66 | | eleq2 2690 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑣 = {(𝑓‘𝑢), 𝑢} → (𝑤 ∈ 𝑣 ↔ 𝑤 ∈ {(𝑓‘𝑢), 𝑢})) |
| 67 | | eleq2 2690 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑣 = {(𝑓‘𝑢), 𝑢} → (𝑧 ∈ 𝑣 ↔ 𝑧 ∈ {(𝑓‘𝑢), 𝑢})) |
| 68 | 66, 67 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑣 = {(𝑓‘𝑢), 𝑢} → ((𝑤 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣) ↔ (𝑤 ∈ {(𝑓‘𝑢), 𝑢} ∧ 𝑧 ∈ {(𝑓‘𝑢), 𝑢}))) |
| 69 | 65, 68 | syl5rbbr 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑣 = {(𝑓‘𝑢), 𝑢} → ((𝑤 ∈ {(𝑓‘𝑢), 𝑢} ∧ 𝑧 ∈ {(𝑓‘𝑢), 𝑢}) ↔ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 70 | 64, 69 | sylan9bbr 737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑣 = {(𝑓‘𝑢), 𝑢} ∧ ¬ 𝑤 = 𝑧) → ({𝑤, 𝑧} = {(𝑓‘𝑢), 𝑢} ↔ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 71 | 60, 70 | sylan2 491 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑣 = {(𝑓‘𝑢), 𝑢} ∧ 𝑤 ∈ 𝑧) → ({𝑤, 𝑧} = {(𝑓‘𝑢), 𝑢} ↔ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 72 | 71 | adantrr 753 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑣 = {(𝑓‘𝑢), 𝑢} ∧ (𝑤 ∈ 𝑧 ∧ (𝑓‘𝑢) ∈ 𝑢)) → ({𝑤, 𝑧} = {(𝑓‘𝑢), 𝑢} ↔ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 73 | 72 | pm5.32da 673 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑣 = {(𝑓‘𝑢), 𝑢} → (((𝑤 ∈ 𝑧 ∧ (𝑓‘𝑢) ∈ 𝑢) ∧ {𝑤, 𝑧} = {(𝑓‘𝑢), 𝑢}) ↔ ((𝑤 ∈ 𝑧 ∧ (𝑓‘𝑢) ∈ 𝑢) ∧ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)))) |
| 74 | 61, 23, 62, 63 | preleq 8514 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑤 ∈ 𝑧 ∧ (𝑓‘𝑢) ∈ 𝑢) ∧ {𝑤, 𝑧} = {(𝑓‘𝑢), 𝑢}) → (𝑤 = (𝑓‘𝑢) ∧ 𝑧 = 𝑢)) |
| 75 | 73, 74 | syl6bir 244 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑣 = {(𝑓‘𝑢), 𝑢} → (((𝑤 ∈ 𝑧 ∧ (𝑓‘𝑢) ∈ 𝑢) ∧ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → (𝑤 = (𝑓‘𝑢) ∧ 𝑧 = 𝑢))) |
| 76 | 51 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = 𝑢 → (𝑤 = (𝑓‘𝑧) ↔ 𝑤 = (𝑓‘𝑢))) |
| 77 | 76 | biimparc 504 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑤 = (𝑓‘𝑢) ∧ 𝑧 = 𝑢) → 𝑤 = (𝑓‘𝑧)) |
| 78 | 75, 77 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑣 = {(𝑓‘𝑢), 𝑢} → (((𝑤 ∈ 𝑧 ∧ (𝑓‘𝑢) ∈ 𝑢) ∧ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → 𝑤 = (𝑓‘𝑧))) |
| 79 | 78 | exp4c 636 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑣 = {(𝑓‘𝑢), 𝑢} → (𝑤 ∈ 𝑧 → ((𝑓‘𝑢) ∈ 𝑢 → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑤 = (𝑓‘𝑧))))) |
| 80 | 79 | com13 88 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓‘𝑢) ∈ 𝑢 → (𝑤 ∈ 𝑧 → (𝑣 = {(𝑓‘𝑢), 𝑢} → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑤 = (𝑓‘𝑧))))) |
| 81 | 56, 80 | syl8 76 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → (𝑢 ∈ 𝑥 → (𝑢 ≠ ∅ → (𝑤 ∈ 𝑧 → (𝑣 = {(𝑓‘𝑢), 𝑢} → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑤 = (𝑓‘𝑧))))))) |
| 82 | 81 | com4r 94 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 ∈ 𝑧 → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → (𝑢 ∈ 𝑥 → (𝑢 ≠ ∅ → (𝑣 = {(𝑓‘𝑢), 𝑢} → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑤 = (𝑓‘𝑧))))))) |
| 83 | 82 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑤 ∈ 𝑧 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) → (𝑢 ∈ 𝑥 → (𝑢 ≠ ∅ → (𝑣 = {(𝑓‘𝑢), 𝑢} → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑤 = (𝑓‘𝑧)))))) |
| 84 | 83 | imp4a 614 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ∈ 𝑧 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) → (𝑢 ∈ 𝑥 → ((𝑢 ≠ ∅ ∧ 𝑣 = {(𝑓‘𝑢), 𝑢}) → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑤 = (𝑓‘𝑧))))) |
| 85 | 84 | com3l 89 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 ∈ 𝑥 → ((𝑢 ≠ ∅ ∧ 𝑣 = {(𝑓‘𝑢), 𝑢}) → ((𝑤 ∈ 𝑧 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑤 = (𝑓‘𝑧))))) |
| 86 | 85 | rexlimiv 3027 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑢 ∈
𝑥 (𝑢 ≠ ∅ ∧ 𝑣 = {(𝑓‘𝑢), 𝑢}) → ((𝑤 ∈ 𝑧 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑤 = (𝑓‘𝑧)))) |
| 87 | 49, 86 | sylbi 207 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} → ((𝑤 ∈ 𝑧 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑤 = (𝑓‘𝑧)))) |
| 88 | 87 | expd 452 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} → (𝑤 ∈ 𝑧 → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑤 = (𝑓‘𝑧))))) |
| 89 | 88 | com13 88 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → (𝑤 ∈ 𝑧 → (𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑤 = (𝑓‘𝑧))))) |
| 90 | 89 | imp4b 613 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ 𝑤 ∈ 𝑧) → ((𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} ∧ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → 𝑤 = (𝑓‘𝑧))) |
| 91 | 90 | exlimdv 1861 |
. . . . . . . . . . . . . 14
⊢
((∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ 𝑤 ∈ 𝑧) → (∃𝑣(𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} ∧ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → 𝑤 = (𝑓‘𝑧))) |
| 92 | 44, 91 | syl5bi 232 |
. . . . . . . . . . . . 13
⊢
((∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ 𝑤 ∈ 𝑧) → (∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑤 = (𝑓‘𝑧))) |
| 93 | 92 | expimpd 629 |
. . . . . . . . . . . 12
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ((𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → 𝑤 = (𝑓‘𝑧))) |
| 94 | 93 | alrimiv 1855 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∀𝑤((𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → 𝑤 = (𝑓‘𝑧))) |
| 95 | | mo2icl 3385 |
. . . . . . . . . . 11
⊢
(∀𝑤((𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → 𝑤 = (𝑓‘𝑧)) → ∃*𝑤(𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 96 | 94, 95 | syl 17 |
. . . . . . . . . 10
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃*𝑤(𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 97 | 43, 96 | jctird 567 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅) → (∃𝑤(𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) ∧ ∃*𝑤(𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))))) |
| 98 | | df-reu 2919 |
. . . . . . . . . 10
⊢
(∃!𝑤 ∈
𝑧 ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ ∃!𝑤(𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 99 | | eu5 2496 |
. . . . . . . . . 10
⊢
(∃!𝑤(𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) ↔ (∃𝑤(𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) ∧ ∃*𝑤(𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)))) |
| 100 | 98, 99 | bitri 264 |
. . . . . . . . 9
⊢
(∃!𝑤 ∈
𝑧 ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ (∃𝑤(𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) ∧ ∃*𝑤(𝑤 ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)))) |
| 101 | 97, 100 | syl6ibr 242 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅) → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 102 | 101 | expd 452 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → (𝑧 ∈ 𝑥 → (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)))) |
| 103 | 2, 102 | ralrimi 2957 |
. . . . . 6
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 104 | | vex 3203 |
. . . . . . . . . . . 12
⊢ 𝑓 ∈ V |
| 105 | 104 | rnex 7100 |
. . . . . . . . . . 11
⊢ ran 𝑓 ∈ V |
| 106 | | p0ex 4853 |
. . . . . . . . . . 11
⊢ {∅}
∈ V |
| 107 | 105, 106 | unex 6956 |
. . . . . . . . . 10
⊢ (ran
𝑓 ∪ {∅}) ∈
V |
| 108 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 109 | 107, 108 | unex 6956 |
. . . . . . . . 9
⊢ ((ran
𝑓 ∪ {∅}) ∪
𝑥) ∈
V |
| 110 | 109 | pwex 4848 |
. . . . . . . 8
⊢ 𝒫
((ran 𝑓 ∪ {∅})
∪ 𝑥) ∈
V |
| 111 | | ssun1 3776 |
. . . . . . . . . . . . . . 15
⊢ (ran
𝑓 ∪ {∅}) ⊆
((ran 𝑓 ∪ {∅})
∪ 𝑥) |
| 112 | | fvrn0 6216 |
. . . . . . . . . . . . . . 15
⊢ (𝑓‘𝑢) ∈ (ran 𝑓 ∪ {∅}) |
| 113 | 111, 112 | sselii 3600 |
. . . . . . . . . . . . . 14
⊢ (𝑓‘𝑢) ∈ ((ran 𝑓 ∪ {∅}) ∪ 𝑥) |
| 114 | | elun2 3781 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ 𝑥 → 𝑢 ∈ ((ran 𝑓 ∪ {∅}) ∪ 𝑥)) |
| 115 | | prssi 4353 |
. . . . . . . . . . . . . 14
⊢ (((𝑓‘𝑢) ∈ ((ran 𝑓 ∪ {∅}) ∪ 𝑥) ∧ 𝑢 ∈ ((ran 𝑓 ∪ {∅}) ∪ 𝑥)) → {(𝑓‘𝑢), 𝑢} ⊆ ((ran 𝑓 ∪ {∅}) ∪ 𝑥)) |
| 116 | 113, 114,
115 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ 𝑥 → {(𝑓‘𝑢), 𝑢} ⊆ ((ran 𝑓 ∪ {∅}) ∪ 𝑥)) |
| 117 | | prex 4909 |
. . . . . . . . . . . . . 14
⊢ {(𝑓‘𝑢), 𝑢} ∈ V |
| 118 | 117 | elpw 4164 |
. . . . . . . . . . . . 13
⊢ ({(𝑓‘𝑢), 𝑢} ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥) ↔ {(𝑓‘𝑢), 𝑢} ⊆ ((ran 𝑓 ∪ {∅}) ∪ 𝑥)) |
| 119 | 116, 118 | sylibr 224 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ 𝑥 → {(𝑓‘𝑢), 𝑢} ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥)) |
| 120 | | eleq1 2689 |
. . . . . . . . . . . 12
⊢ (𝑔 = {(𝑓‘𝑢), 𝑢} → (𝑔 ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥) ↔ {(𝑓‘𝑢), 𝑢} ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥))) |
| 121 | 119, 120 | syl5ibrcom 237 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ 𝑥 → (𝑔 = {(𝑓‘𝑢), 𝑢} → 𝑔 ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥))) |
| 122 | 121 | adantld 483 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝑥 → ((𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢}) → 𝑔 ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥))) |
| 123 | 122 | rexlimiv 3027 |
. . . . . . . . 9
⊢
(∃𝑢 ∈
𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢}) → 𝑔 ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥)) |
| 124 | 123 | abssi 3677 |
. . . . . . . 8
⊢ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} ⊆ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥) |
| 125 | 110, 124 | ssexi 4803 |
. . . . . . 7
⊢ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} ∈ V |
| 126 | | rexeq 3139 |
. . . . . . . . . 10
⊢ (𝑦 = {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} → (∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 127 | 126 | reubidv 3126 |
. . . . . . . . 9
⊢ (𝑦 = {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} → (∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 128 | 127 | imbi2d 330 |
. . . . . . . 8
⊢ (𝑦 = {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} → ((𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) ↔ (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)))) |
| 129 | 128 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑦 = {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) ↔ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)))) |
| 130 | 125, 129 | spcev 3300 |
. . . . . 6
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ {𝑔 ∣ ∃𝑢 ∈ 𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓‘𝑢), 𝑢})} (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 131 | 103, 130 | syl 17 |
. . . . 5
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 132 | 131 | exlimiv 1858 |
. . . 4
⊢
(∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 133 | 132 | alimi 1739 |
. . 3
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∀𝑥∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 134 | 1, 133 | sylbi 207 |
. 2
⊢
(CHOICE → ∀𝑥∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 135 | | dfac2a 8952 |
. 2
⊢
(∀𝑥∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) →
CHOICE) |
| 136 | 134, 135 | impbii 199 |
1
⊢
(CHOICE ↔ ∀𝑥∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |