Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfiota3 Structured version   Visualization version   GIF version

Theorem dfiota3 32030
Description: A definiton of iota using minimal quantifiers. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
dfiota3 (℩𝑥𝜑) = ({{𝑥𝜑}} ∩ Singletons )

Proof of Theorem dfiota3
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iota 5851 . 2 (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
2 abeq1 2733 . . . . 5 ({𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})} ↔ ∀𝑦({𝑥𝜑} = {𝑦} ↔ 𝑦 {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}))
3 exdistr 1919 . . . . . 6 (∃𝑧𝑤(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})) ↔ ∃𝑧(𝑦𝑧 ∧ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
4 vex 3203 . . . . . . . . 9 𝑦 ∈ V
5 sneq 4187 . . . . . . . . . 10 (𝑤 = 𝑦 → {𝑤} = {𝑦})
65eqeq2d 2632 . . . . . . . . 9 (𝑤 = 𝑦 → ({𝑥𝜑} = {𝑤} ↔ {𝑥𝜑} = {𝑦}))
74, 6ceqsexv 3242 . . . . . . . 8 (∃𝑤(𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}) ↔ {𝑥𝜑} = {𝑦})
8 snex 4908 . . . . . . . . . . 11 {𝑤} ∈ V
9 eqeq1 2626 . . . . . . . . . . . . 13 (𝑧 = {𝑤} → (𝑧 = {𝑥𝜑} ↔ {𝑤} = {𝑥𝜑}))
10 eleq2 2690 . . . . . . . . . . . . 13 (𝑧 = {𝑤} → (𝑦𝑧𝑦 ∈ {𝑤}))
119, 10anbi12d 747 . . . . . . . . . . . 12 (𝑧 = {𝑤} → ((𝑧 = {𝑥𝜑} ∧ 𝑦𝑧) ↔ ({𝑤} = {𝑥𝜑} ∧ 𝑦 ∈ {𝑤})))
12 eqcom 2629 . . . . . . . . . . . . 13 ({𝑤} = {𝑥𝜑} ↔ {𝑥𝜑} = {𝑤})
13 velsn 4193 . . . . . . . . . . . . . 14 (𝑦 ∈ {𝑤} ↔ 𝑦 = 𝑤)
14 equcom 1945 . . . . . . . . . . . . . 14 (𝑦 = 𝑤𝑤 = 𝑦)
1513, 14bitri 264 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑤} ↔ 𝑤 = 𝑦)
1612, 15anbi12ci 734 . . . . . . . . . . . 12 (({𝑤} = {𝑥𝜑} ∧ 𝑦 ∈ {𝑤}) ↔ (𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}))
1711, 16syl6bb 276 . . . . . . . . . . 11 (𝑧 = {𝑤} → ((𝑧 = {𝑥𝜑} ∧ 𝑦𝑧) ↔ (𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤})))
188, 17ceqsexv 3242 . . . . . . . . . 10 (∃𝑧(𝑧 = {𝑤} ∧ (𝑧 = {𝑥𝜑} ∧ 𝑦𝑧)) ↔ (𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}))
19 an13 840 . . . . . . . . . . 11 ((𝑧 = {𝑤} ∧ (𝑧 = {𝑥𝜑} ∧ 𝑦𝑧)) ↔ (𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
2019exbii 1774 . . . . . . . . . 10 (∃𝑧(𝑧 = {𝑤} ∧ (𝑧 = {𝑥𝜑} ∧ 𝑦𝑧)) ↔ ∃𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
2118, 20bitr3i 266 . . . . . . . . 9 ((𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}) ↔ ∃𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
2221exbii 1774 . . . . . . . 8 (∃𝑤(𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}) ↔ ∃𝑤𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
237, 22bitr3i 266 . . . . . . 7 ({𝑥𝜑} = {𝑦} ↔ ∃𝑤𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
24 excom 2042 . . . . . . 7 (∃𝑤𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})) ↔ ∃𝑧𝑤(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
2523, 24bitri 264 . . . . . 6 ({𝑥𝜑} = {𝑦} ↔ ∃𝑧𝑤(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
26 eluniab 4447 . . . . . 6 (𝑦 {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})} ↔ ∃𝑧(𝑦𝑧 ∧ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
273, 25, 263bitr4i 292 . . . . 5 ({𝑥𝜑} = {𝑦} ↔ 𝑦 {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})})
282, 27mpgbir 1726 . . . 4 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
29 df-sn 4178 . . . . . . 7 {{𝑥𝜑}} = {𝑧𝑧 = {𝑥𝜑}}
30 dfsingles2 32028 . . . . . . 7 Singletons = {𝑧 ∣ ∃𝑤 𝑧 = {𝑤}}
3129, 30ineq12i 3812 . . . . . 6 ({{𝑥𝜑}} ∩ Singletons ) = ({𝑧𝑧 = {𝑥𝜑}} ∩ {𝑧 ∣ ∃𝑤 𝑧 = {𝑤}})
32 inab 3895 . . . . . . 7 ({𝑧𝑧 = {𝑥𝜑}} ∩ {𝑧 ∣ ∃𝑤 𝑧 = {𝑤}}) = {𝑧 ∣ (𝑧 = {𝑥𝜑} ∧ ∃𝑤 𝑧 = {𝑤})}
33 19.42v 1918 . . . . . . . . 9 (∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤}) ↔ (𝑧 = {𝑥𝜑} ∧ ∃𝑤 𝑧 = {𝑤}))
3433bicomi 214 . . . . . . . 8 ((𝑧 = {𝑥𝜑} ∧ ∃𝑤 𝑧 = {𝑤}) ↔ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤}))
3534abbii 2739 . . . . . . 7 {𝑧 ∣ (𝑧 = {𝑥𝜑} ∧ ∃𝑤 𝑧 = {𝑤})} = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
3632, 35eqtri 2644 . . . . . 6 ({𝑧𝑧 = {𝑥𝜑}} ∩ {𝑧 ∣ ∃𝑤 𝑧 = {𝑤}}) = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
3731, 36eqtri 2644 . . . . 5 ({{𝑥𝜑}} ∩ Singletons ) = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
3837unieqi 4445 . . . 4 ({{𝑥𝜑}} ∩ Singletons ) = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
3928, 38eqtr4i 2647 . . 3 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = ({{𝑥𝜑}} ∩ Singletons )
4039unieqi 4445 . 2 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = ({{𝑥𝜑}} ∩ Singletons )
411, 40eqtri 2644 1 (℩𝑥𝜑) = ({{𝑥𝜑}} ∩ Singletons )
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  cin 3573  {csn 4177   cuni 4436  cio 5849   Singletons csingles 31946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-symdif 3844  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-eprel 5029  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169  df-txp 31961  df-singleton 31969  df-singles 31970
This theorem is referenced by:  dffv5  32031
  Copyright terms: Public domain W3C validator