| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfiota3 | Structured version Visualization version Unicode version | ||
| Description: A definiton of iota using minimal quantifiers. (Contributed by Scott Fenton, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| dfiota3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iota 5851 |
. 2
| |
| 2 | abeq1 2733 |
. . . . 5
| |
| 3 | exdistr 1919 |
. . . . . 6
| |
| 4 | vex 3203 |
. . . . . . . . 9
| |
| 5 | sneq 4187 |
. . . . . . . . . 10
| |
| 6 | 5 | eqeq2d 2632 |
. . . . . . . . 9
|
| 7 | 4, 6 | ceqsexv 3242 |
. . . . . . . 8
|
| 8 | snex 4908 |
. . . . . . . . . . 11
| |
| 9 | eqeq1 2626 |
. . . . . . . . . . . . 13
| |
| 10 | eleq2 2690 |
. . . . . . . . . . . . 13
| |
| 11 | 9, 10 | anbi12d 747 |
. . . . . . . . . . . 12
|
| 12 | eqcom 2629 |
. . . . . . . . . . . . 13
| |
| 13 | velsn 4193 |
. . . . . . . . . . . . . 14
| |
| 14 | equcom 1945 |
. . . . . . . . . . . . . 14
| |
| 15 | 13, 14 | bitri 264 |
. . . . . . . . . . . . 13
|
| 16 | 12, 15 | anbi12ci 734 |
. . . . . . . . . . . 12
|
| 17 | 11, 16 | syl6bb 276 |
. . . . . . . . . . 11
|
| 18 | 8, 17 | ceqsexv 3242 |
. . . . . . . . . 10
|
| 19 | an13 840 |
. . . . . . . . . . 11
| |
| 20 | 19 | exbii 1774 |
. . . . . . . . . 10
|
| 21 | 18, 20 | bitr3i 266 |
. . . . . . . . 9
|
| 22 | 21 | exbii 1774 |
. . . . . . . 8
|
| 23 | 7, 22 | bitr3i 266 |
. . . . . . 7
|
| 24 | excom 2042 |
. . . . . . 7
| |
| 25 | 23, 24 | bitri 264 |
. . . . . 6
|
| 26 | eluniab 4447 |
. . . . . 6
| |
| 27 | 3, 25, 26 | 3bitr4i 292 |
. . . . 5
|
| 28 | 2, 27 | mpgbir 1726 |
. . . 4
|
| 29 | df-sn 4178 |
. . . . . . 7
| |
| 30 | dfsingles2 32028 |
. . . . . . 7
| |
| 31 | 29, 30 | ineq12i 3812 |
. . . . . 6
|
| 32 | inab 3895 |
. . . . . . 7
| |
| 33 | 19.42v 1918 |
. . . . . . . . 9
| |
| 34 | 33 | bicomi 214 |
. . . . . . . 8
|
| 35 | 34 | abbii 2739 |
. . . . . . 7
|
| 36 | 32, 35 | eqtri 2644 |
. . . . . 6
|
| 37 | 31, 36 | eqtri 2644 |
. . . . 5
|
| 38 | 37 | unieqi 4445 |
. . . 4
|
| 39 | 28, 38 | eqtr4i 2647 |
. . 3
|
| 40 | 39 | unieqi 4445 |
. 2
|
| 41 | 1, 40 | eqtri 2644 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-symdif 3844 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-eprel 5029 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-1st 7168 df-2nd 7169 df-txp 31961 df-singleton 31969 df-singles 31970 |
| This theorem is referenced by: dffv5 32031 |
| Copyright terms: Public domain | W3C validator |