![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaocN | Structured version Visualization version GIF version |
Description: Value of partial isomorphism A at lattice orthocomplement (using a Sasaki projection to get orthocomplement relative to the fiducial co-atom 𝑊). (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
diaoc.j | ⊢ ∨ = (join‘𝐾) |
diaoc.m | ⊢ ∧ = (meet‘𝐾) |
diaoc.o | ⊢ ⊥ = (oc‘𝐾) |
diaoc.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diaoc.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
diaoc.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
diaoc.n | ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diaocN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝑁‘(𝐼‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 473 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | eqid 2622 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | diaoc.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | diaoc.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | diadmclN 36326 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ (Base‘𝐾)) |
6 | eqid 2622 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
7 | 6, 3, 4 | diadmleN 36327 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋(le‘𝐾)𝑊) |
8 | diaoc.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
9 | 2, 6, 3, 8, 4 | diass 36331 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑋(le‘𝐾)𝑊)) → (𝐼‘𝑋) ⊆ 𝑇) |
10 | 1, 5, 7, 9 | syl12anc 1324 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ⊆ 𝑇) |
11 | diaoc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
12 | diaoc.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
13 | diaoc.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
14 | diaoc.n | . . . 4 ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) | |
15 | 11, 12, 13, 3, 8, 4, 14 | docavalN 36412 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑋) ⊆ 𝑇) → (𝑁‘(𝐼‘𝑋)) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
16 | 10, 15 | syldan 487 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑁‘(𝐼‘𝑋)) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
17 | 3, 4 | diaclN 36339 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ ran 𝐼) |
18 | intmin 4497 | . . . . . . . . 9 ⊢ ((𝐼‘𝑋) ∈ ran 𝐼 → ∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧} = (𝐼‘𝑋)) | |
19 | 17, 18 | syl 17 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧} = (𝐼‘𝑋)) |
20 | 19 | fveq2d 6195 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧}) = (◡𝐼‘(𝐼‘𝑋))) |
21 | 3, 4 | diaf11N 36338 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
22 | f1ocnvfv1 6532 | . . . . . . . 8 ⊢ ((𝐼:dom 𝐼–1-1-onto→ran 𝐼 ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘(𝐼‘𝑋)) = 𝑋) | |
23 | 21, 22 | sylan 488 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘(𝐼‘𝑋)) = 𝑋) |
24 | 20, 23 | eqtrd 2656 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧}) = 𝑋) |
25 | 24 | fveq2d 6195 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) = ( ⊥ ‘𝑋)) |
26 | 25 | oveq1d 6665 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) = (( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊))) |
27 | 26 | oveq1d 6665 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊) = ((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) |
28 | 27 | fveq2d 6195 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝐼‘((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
29 | 16, 28 | eqtr2d 2657 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝑁‘(𝐼‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 ⊆ wss 3574 ∩ cint 4475 class class class wbr 4653 ◡ccnv 5113 dom cdm 5114 ran crn 5115 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 lecple 15948 occoc 15949 joincjn 16944 meetcmee 16945 HLchlt 34637 LHypclh 35270 LTrncltrn 35387 DIsoAcdia 36317 ocAcocaN 36408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-riotaBAD 34239 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-undef 7399 df-map 7859 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-disoa 36318 df-docaN 36409 |
This theorem is referenced by: doca2N 36415 djajN 36426 |
Copyright terms: Public domain | W3C validator |