| Step | Hyp | Ref
| Expression |
| 1 | | docaval.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
| 2 | | docaval.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
| 3 | | docaval.o |
. . . . 5
⊢ ⊥ =
(oc‘𝐾) |
| 4 | | docaval.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 5 | | docaval.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 6 | | docaval.i |
. . . . 5
⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| 7 | | docaval.n |
. . . . 5
⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | docafvalN 36411 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)))) |
| 9 | 8 | adantr 481 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → 𝑁 = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)))) |
| 10 | 9 | fveq1d 6193 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → (𝑁‘𝑋) = ((𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)))‘𝑋)) |
| 11 | | fvex 6201 |
. . . . . . 7
⊢
((LTrn‘𝐾)‘𝑊) ∈ V |
| 12 | 5, 11 | eqeltri 2697 |
. . . . . 6
⊢ 𝑇 ∈ V |
| 13 | 12 | elpw2 4828 |
. . . . 5
⊢ (𝑋 ∈ 𝒫 𝑇 ↔ 𝑋 ⊆ 𝑇) |
| 14 | 13 | biimpri 218 |
. . . 4
⊢ (𝑋 ⊆ 𝑇 → 𝑋 ∈ 𝒫 𝑇) |
| 15 | 14 | adantl 482 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → 𝑋 ∈ 𝒫 𝑇) |
| 16 | | fvex 6201 |
. . 3
⊢ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) ∈ V |
| 17 | | sseq1 3626 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝑧 ↔ 𝑋 ⊆ 𝑧)) |
| 18 | 17 | rabbidv 3189 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧} = {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
| 19 | 18 | inteqd 4480 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧} = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
| 20 | 19 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧}) = (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) |
| 21 | 20 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) = ( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))) |
| 22 | 21 | oveq1d 6665 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) = (( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊))) |
| 23 | 22 | oveq1d 6665 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊) = ((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) |
| 24 | 23 | fveq2d 6195 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
| 25 | | eqid 2622 |
. . . 4
⊢ (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
| 26 | 24, 25 | fvmptg 6280 |
. . 3
⊢ ((𝑋 ∈ 𝒫 𝑇 ∧ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) ∈ V) → ((𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)))‘𝑋) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
| 27 | 15, 16, 26 | sylancl 694 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → ((𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)))‘𝑋) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
| 28 | 10, 27 | eqtrd 2656 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → (𝑁‘𝑋) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |