![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > difico | Structured version Visualization version GIF version |
Description: The difference between two closed-below, open-above intervals sharing the same upper bound. (Contributed by Thierry Arnoux, 13-Oct-2017.) |
Ref | Expression |
---|---|
difico | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐶) ∖ (𝐵[,)𝐶)) = (𝐴[,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icodisj 12297 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅) | |
2 | undif4 4035 | . . . 4 ⊢ (((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅ → ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) ∖ (𝐵[,)𝐶))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) ∖ (𝐵[,)𝐶))) |
4 | 3 | adantr 481 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) ∖ (𝐵[,)𝐶))) |
5 | difid 3948 | . . . . 5 ⊢ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶)) = ∅ | |
6 | 5 | uneq2i 3764 | . . . 4 ⊢ ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = ((𝐴[,)𝐵) ∪ ∅) |
7 | un0 3967 | . . . 4 ⊢ ((𝐴[,)𝐵) ∪ ∅) = (𝐴[,)𝐵) | |
8 | 6, 7 | eqtri 2644 | . . 3 ⊢ ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (𝐴[,)𝐵) |
9 | 8 | a1i 11 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐵) ∪ ((𝐵[,)𝐶) ∖ (𝐵[,)𝐶))) = (𝐴[,)𝐵)) |
10 | icoun 12296 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) = (𝐴[,)𝐶)) | |
11 | 10 | difeq1d 3727 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → (((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) ∖ (𝐵[,)𝐶)) = ((𝐴[,)𝐶) ∖ (𝐵[,)𝐶))) |
12 | 4, 9, 11 | 3eqtr3rd 2665 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐶) ∖ (𝐵[,)𝐶)) = (𝐴[,)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∖ cdif 3571 ∪ cun 3572 ∩ cin 3573 ∅c0 3915 class class class wbr 4653 (class class class)co 6650 ℝ*cxr 10073 ≤ cle 10075 [,)cico 12177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-ico 12181 |
This theorem is referenced by: sxbrsigalem2 30348 |
Copyright terms: Public domain | W3C validator |