Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem2 Structured version   Visualization version   GIF version

Theorem sxbrsigalem2 30348
Description: The sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ) is a subset of the sigma-algebra generated by the closed half-spaces of (ℝ × ℝ). The proof goes by noting the fact that the dyadic rectangles are intersections of a 'vertical band' and an 'horizontal band', which themselves are differences of closed half-spaces. (Contributed by Thierry Arnoux, 17-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
sxbrsigalem2 (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑛,𝑣   𝑅,𝑛,𝑥   𝑥,𝐽   𝑒,𝑓,𝑛,𝑢,𝑣,𝑥
Allowed substitution hints:   𝑅(𝑣,𝑢,𝑒,𝑓)   𝐼(𝑒,𝑓,𝑛)   𝐽(𝑣,𝑢,𝑒,𝑓,𝑛)

Proof of Theorem sxbrsigalem2
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 sxbrsiga.0 . . . 4 𝐽 = (topGen‘ran (,))
2 dya2ioc.1 . . . 4 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3 dya2ioc.2 . . . 4 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
41, 2, 3dya2iocucvr 30346 . . 3 ran 𝑅 = (ℝ × ℝ)
5 sxbrsigalem0 30333 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
64, 5eqtr4i 2647 . 2 ran 𝑅 = (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
7 vex 3203 . . . . . 6 𝑢 ∈ V
8 vex 3203 . . . . . 6 𝑣 ∈ V
97, 8xpex 6962 . . . . 5 (𝑢 × 𝑣) ∈ V
103, 9elrnmpt2 6773 . . . 4 (𝑑 ∈ ran 𝑅 ↔ ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣))
11 simpr 477 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 = (𝑢 × 𝑣))
121, 2dya2icobrsiga 30338 . . . . . . . . . . . . 13 ran 𝐼 ⊆ 𝔅
13 brsigasspwrn 30248 . . . . . . . . . . . . 13 𝔅 ⊆ 𝒫 ℝ
1412, 13sstri 3612 . . . . . . . . . . . 12 ran 𝐼 ⊆ 𝒫 ℝ
1514sseli 3599 . . . . . . . . . . 11 (𝑢 ∈ ran 𝐼𝑢 ∈ 𝒫 ℝ)
1615elpwid 4170 . . . . . . . . . 10 (𝑢 ∈ ran 𝐼𝑢 ⊆ ℝ)
1714sseli 3599 . . . . . . . . . . 11 (𝑣 ∈ ran 𝐼𝑣 ∈ 𝒫 ℝ)
1817elpwid 4170 . . . . . . . . . 10 (𝑣 ∈ ran 𝐼𝑣 ⊆ ℝ)
19 xpinpreima2 29953 . . . . . . . . . 10 ((𝑢 ⊆ ℝ ∧ 𝑣 ⊆ ℝ) → (𝑢 × 𝑣) = (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)))
2016, 18, 19syl2an 494 . . . . . . . . 9 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 × 𝑣) = (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)))
21 reex 10027 . . . . . . . . . . . . . . . . 17 ℝ ∈ V
2221mptex 6486 . . . . . . . . . . . . . . . 16 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∈ V
2322rnex 7100 . . . . . . . . . . . . . . 15 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∈ V
2421mptex 6486 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ∈ V
2524rnex 7100 . . . . . . . . . . . . . . 15 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ∈ V
2623, 25unex 6956 . . . . . . . . . . . . . 14 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V
2726a1i 11 . . . . . . . . . . . . 13 (⊤ → (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V)
2827sgsiga 30205 . . . . . . . . . . . 12 (⊤ → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra)
2928trud 1493 . . . . . . . . . . 11 (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra
3029a1i 11 . . . . . . . . . 10 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra)
31 1stpreima 29484 . . . . . . . . . . . . 13 (𝑢 ⊆ ℝ → ((1st ↾ (ℝ × ℝ)) “ 𝑢) = (𝑢 × ℝ))
3216, 31syl 17 . . . . . . . . . . . 12 (𝑢 ∈ ran 𝐼 → ((1st ↾ (ℝ × ℝ)) “ 𝑢) = (𝑢 × ℝ))
33 ovex 6678 . . . . . . . . . . . . . 14 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
342, 33elrnmpt2 6773 . . . . . . . . . . . . 13 (𝑢 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
35 simpr 477 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3635xpeq1d 5138 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑢 × ℝ) = (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ))
37 difxp1 5559 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) × ℝ) = ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ))
38 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℤ)
3938zred 11482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
40 2rp 11837 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ+
4140a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℝ+)
42 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
4341, 42rpexpcld 13032 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2↑𝑛) ∈ ℝ+)
4439, 43rerpdivcld 11903 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ)
4544rexrd 10089 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ*)
46 1red 10055 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 1 ∈ ℝ)
4739, 46readdcld 10069 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 + 1) ∈ ℝ)
4847, 43rerpdivcld 11903 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ)
4948rexrd 10089 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*)
50 pnfxr 10092 . . . . . . . . . . . . . . . . . . . . . 22 +∞ ∈ ℝ*
5150a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → +∞ ∈ ℝ*)
5239lep1d 10955 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ≤ (𝑥 + 1))
5339, 47, 43, 52lediv1dd 11930 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ≤ ((𝑥 + 1) / (2↑𝑛)))
54 pnfge 11964 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 + 1) / (2↑𝑛)) ∈ ℝ* → ((𝑥 + 1) / (2↑𝑛)) ≤ +∞)
5549, 54syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ≤ +∞)
56 difico 29545 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 / (2↑𝑛)) ∈ ℝ* ∧ ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ ((𝑥 / (2↑𝑛)) ≤ ((𝑥 + 1) / (2↑𝑛)) ∧ ((𝑥 + 1) / (2↑𝑛)) ≤ +∞)) → (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
5745, 49, 51, 53, 55, 56syl32anc 1334 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
5857xpeq1d 5138 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) × ℝ) = (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ))
5937, 58syl5reqr 2671 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ) = ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)))
6029a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra)
61 ssun1 3776 . . . . . . . . . . . . . . . . . . . . 21 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
62 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = (((𝑥 / (2↑𝑛))[,)+∞) × ℝ)
63 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑒 = (𝑥 / (2↑𝑛)) → (𝑒[,)+∞) = ((𝑥 / (2↑𝑛))[,)+∞))
6463xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑒 = (𝑥 / (2↑𝑛)) → ((𝑒[,)+∞) × ℝ) = (((𝑥 / (2↑𝑛))[,)+∞) × ℝ))
6564eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = (𝑥 / (2↑𝑛)) → ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ) ↔ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = (((𝑥 / (2↑𝑛))[,)+∞) × ℝ)))
6665rspcev 3309 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 / (2↑𝑛)) ∈ ℝ ∧ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = (((𝑥 / (2↑𝑛))[,)+∞) × ℝ)) → ∃𝑒 ∈ ℝ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
6744, 62, 66sylancl 694 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑒 ∈ ℝ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
68 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) = (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
69 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒[,)+∞) ∈ V
7069, 21xpex 6962 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑒[,)+∞) × ℝ) ∈ V
7168, 70elrnmpti 5376 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ↔ ∃𝑒 ∈ ℝ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
7267, 71sylibr 224 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
7361, 72sseldi 3601 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
74 elsigagen 30210 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
7526, 73, 74sylancr 695 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
76 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)
77 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑒 = ((𝑥 + 1) / (2↑𝑛)) → (𝑒[,)+∞) = (((𝑥 + 1) / (2↑𝑛))[,)+∞))
7877xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑒 = ((𝑥 + 1) / (2↑𝑛)) → ((𝑒[,)+∞) × ℝ) = ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ))
7978eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = ((𝑥 + 1) / (2↑𝑛)) → (((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ) ↔ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)))
8079rspcev 3309 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 + 1) / (2↑𝑛)) ∈ ℝ ∧ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)) → ∃𝑒 ∈ ℝ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
8148, 76, 80sylancl 694 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑒 ∈ ℝ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
8268, 70elrnmpti 5376 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ↔ ∃𝑒 ∈ ℝ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
8381, 82sylibr 224 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
8461, 83sseldi 3601 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
85 elsigagen 30210 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8626, 84, 85sylancr 695 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
87 difelsiga 30196 . . . . . . . . . . . . . . . . . . 19 (((sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra ∧ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))) → ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8860, 75, 86, 87syl3anc 1326 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8959, 88eqeltrd 2701 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9089adantr 481 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9136, 90eqeltrd 2701 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9291ex 450 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))))
9392rexlimivv 3036 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9434, 93sylbi 207 . . . . . . . . . . . 12 (𝑢 ∈ ran 𝐼 → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9532, 94eqeltrd 2701 . . . . . . . . . . 11 (𝑢 ∈ ran 𝐼 → ((1st ↾ (ℝ × ℝ)) “ 𝑢) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9695adantr 481 . . . . . . . . . 10 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → ((1st ↾ (ℝ × ℝ)) “ 𝑢) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
97 2ndpreima 29485 . . . . . . . . . . . . 13 (𝑣 ⊆ ℝ → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) = (ℝ × 𝑣))
9818, 97syl 17 . . . . . . . . . . . 12 (𝑣 ∈ ran 𝐼 → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) = (ℝ × 𝑣))
992, 33elrnmpt2 6773 . . . . . . . . . . . . 13 (𝑣 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
100 simpr 477 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
101100xpeq2d 5139 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (ℝ × 𝑣) = (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))))
102 difxp2 5560 . . . . . . . . . . . . . . . . . . 19 (ℝ × (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞))) = ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)))
10357xpeq2d 5139 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞))) = (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))))
104102, 103syl5reqr 2671 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) = ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))))
105 ssun2 3777 . . . . . . . . . . . . . . . . . . . . 21 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
106 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × ((𝑥 / (2↑𝑛))[,)+∞))
107 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = (𝑥 / (2↑𝑛)) → (𝑓[,)+∞) = ((𝑥 / (2↑𝑛))[,)+∞))
108107xpeq2d 5139 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = (𝑥 / (2↑𝑛)) → (ℝ × (𝑓[,)+∞)) = (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)))
109108eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = (𝑥 / (2↑𝑛)) → ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)) ↔ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × ((𝑥 / (2↑𝑛))[,)+∞))))
110109rspcev 3309 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 / (2↑𝑛)) ∈ ℝ ∧ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × ((𝑥 / (2↑𝑛))[,)+∞))) → ∃𝑓 ∈ ℝ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
11144, 106, 110sylancl 694 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑓 ∈ ℝ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
112 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) = (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))
113 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓[,)+∞) ∈ V
11421, 113xpex 6962 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ × (𝑓[,)+∞)) ∈ V
115112, 114elrnmpti 5376 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ↔ ∃𝑓 ∈ ℝ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
116111, 115sylibr 224 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
117105, 116sseldi 3601 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
118 elsigagen 30210 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
11926, 117, 118sylancr 695 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
120 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))
121 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = ((𝑥 + 1) / (2↑𝑛)) → (𝑓[,)+∞) = (((𝑥 + 1) / (2↑𝑛))[,)+∞))
122121xpeq2d 5139 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = ((𝑥 + 1) / (2↑𝑛)) → (ℝ × (𝑓[,)+∞)) = (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)))
123122eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = ((𝑥 + 1) / (2↑𝑛)) → ((ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)) ↔ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))))
124123rspcev 3309 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 + 1) / (2↑𝑛)) ∈ ℝ ∧ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))) → ∃𝑓 ∈ ℝ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
12548, 120, 124sylancl 694 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑓 ∈ ℝ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
126112, 114elrnmpti 5376 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ↔ ∃𝑓 ∈ ℝ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
127125, 126sylibr 224 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
128105, 127sseldi 3601 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
129 elsigagen 30210 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13026, 128, 129sylancr 695 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
131 difelsiga 30196 . . . . . . . . . . . . . . . . . . 19 (((sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra ∧ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))) → ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13260, 119, 130, 131syl3anc 1326 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
133104, 132eqeltrd 2701 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
134133adantr 481 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
135101, 134eqeltrd 2701 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
136135ex 450 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))))
137136rexlimivv 3036 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13899, 137sylbi 207 . . . . . . . . . . . 12 (𝑣 ∈ ran 𝐼 → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13998, 138eqeltrd 2701 . . . . . . . . . . 11 (𝑣 ∈ ran 𝐼 → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
140139adantl 482 . . . . . . . . . 10 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
141 inelsiga 30198 . . . . . . . . . 10 (((sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra ∧ ((1st ↾ (ℝ × ℝ)) “ 𝑢) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ ((2nd ↾ (ℝ × ℝ)) “ 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))) → (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
14230, 96, 140, 141syl3anc 1326 . . . . . . . . 9 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
14320, 142eqeltrd 2701 . . . . . . . 8 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
144143adantr 481 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → (𝑢 × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
14511, 144eqeltrd 2701 . . . . . 6 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
146145ex 450 . . . . 5 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑑 = (𝑢 × 𝑣) → 𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))))
147146rexlimivv 3036 . . . 4 (∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣) → 𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
14810, 147sylbi 207 . . 3 (𝑑 ∈ ran 𝑅𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
149148ssriv 3607 . 2 ran 𝑅 ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
150 sigagenss2 30213 . 2 (( ran 𝑅 = (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∧ ran 𝑅 ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V) → (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
1516, 149, 26, 150mp3an 1424 1 (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wtru 1484  wcel 1990  wrex 2913  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  𝒫 cpw 4158   cuni 4436   class class class wbr 4653  cmpt 4729   × cxp 5112  ccnv 5113  ran crn 5115  cres 5116  cima 5117  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  cr 9935  1c1 9937   + caddc 9939  +∞cpnf 10071  *cxr 10073  cle 10075   / cdiv 10684  2c2 11070  cz 11377  +crp 11832  (,)cioo 12175  [,)cico 12177  cexp 12860  topGenctg 16098  sigAlgebracsiga 30170  sigaGencsigagen 30201  𝔅cbrsiga 30244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-refld 19951  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-fcls 21745  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-cfil 23053  df-cmet 23055  df-cms 23132  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-logb 24503  df-siga 30171  df-sigagen 30202  df-brsiga 30245
This theorem is referenced by:  sxbrsigalem4  30349
  Copyright terms: Public domain W3C validator