![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > distgp | Structured version Visualization version GIF version |
Description: Any group equipped with the discrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
distgp.1 | ⊢ 𝐵 = (Base‘𝐺) |
distgp.2 | ⊢ 𝐽 = (TopOpen‘𝐺) |
Ref | Expression |
---|---|
distgp | ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 473 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ Grp) | |
2 | simpr 477 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐽 = 𝒫 𝐵) | |
3 | distgp.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
4 | fvex 6201 | . . . . . 6 ⊢ (Base‘𝐺) ∈ V | |
5 | 3, 4 | eqeltri 2697 | . . . . 5 ⊢ 𝐵 ∈ V |
6 | distopon 20801 | . . . . 5 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ (TopOn‘𝐵)) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ 𝒫 𝐵 ∈ (TopOn‘𝐵) |
8 | 2, 7 | syl6eqel 2709 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐽 ∈ (TopOn‘𝐵)) |
9 | distgp.2 | . . . 4 ⊢ 𝐽 = (TopOpen‘𝐺) | |
10 | 3, 9 | istps 20738 | . . 3 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵)) |
11 | 8, 10 | sylibr 224 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopSp) |
12 | eqid 2622 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
13 | 3, 12 | grpsubf 17494 | . . . . 5 ⊢ (𝐺 ∈ Grp → (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
14 | 13 | adantr 481 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
15 | 5, 5 | xpex 6962 | . . . . 5 ⊢ (𝐵 × 𝐵) ∈ V |
16 | 5, 15 | elmap 7886 | . . . 4 ⊢ ((-g‘𝐺) ∈ (𝐵 ↑𝑚 (𝐵 × 𝐵)) ↔ (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
17 | 14, 16 | sylibr 224 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g‘𝐺) ∈ (𝐵 ↑𝑚 (𝐵 × 𝐵))) |
18 | 2, 2 | oveq12d 6668 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝐽 ×t 𝐽) = (𝒫 𝐵 ×t 𝒫 𝐵)) |
19 | txdis 21435 | . . . . . . 7 ⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝒫 𝐵 ×t 𝒫 𝐵) = 𝒫 (𝐵 × 𝐵)) | |
20 | 5, 5, 19 | mp2an 708 | . . . . . 6 ⊢ (𝒫 𝐵 ×t 𝒫 𝐵) = 𝒫 (𝐵 × 𝐵) |
21 | 18, 20 | syl6eq 2672 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝐽 ×t 𝐽) = 𝒫 (𝐵 × 𝐵)) |
22 | 21 | oveq1d 6665 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝒫 (𝐵 × 𝐵) Cn 𝐽)) |
23 | cndis 21095 | . . . . 5 ⊢ (((𝐵 × 𝐵) ∈ V ∧ 𝐽 ∈ (TopOn‘𝐵)) → (𝒫 (𝐵 × 𝐵) Cn 𝐽) = (𝐵 ↑𝑚 (𝐵 × 𝐵))) | |
24 | 15, 8, 23 | sylancr 695 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝒫 (𝐵 × 𝐵) Cn 𝐽) = (𝐵 ↑𝑚 (𝐵 × 𝐵))) |
25 | 22, 24 | eqtrd 2656 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝐵 ↑𝑚 (𝐵 × 𝐵))) |
26 | 17, 25 | eleqtrrd 2704 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
27 | 9, 12 | istgp2 21895 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ (-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
28 | 1, 11, 26, 27 | syl3anbrc 1246 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 𝒫 cpw 4158 × cxp 5112 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 Basecbs 15857 TopOpenctopn 16082 Grpcgrp 17422 -gcsg 17424 TopOnctopon 20715 TopSpctps 20736 Cn ccn 21028 ×t ctx 21363 TopGrpctgp 21875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-0g 16102 df-topgen 16104 df-plusf 17241 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cn 21031 df-cnp 21032 df-tx 21365 df-tmd 21876 df-tgp 21877 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |