![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmcoass | Structured version Visualization version GIF version |
Description: The domain of composition is a collection of pairs of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
coafval.o | ⊢ · = (compa‘𝐶) |
coafval.a | ⊢ 𝐴 = (Arrow‘𝐶) |
Ref | Expression |
---|---|
dmcoass | ⊢ dom · ⊆ (𝐴 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coafval.o | . . . 4 ⊢ · = (compa‘𝐶) | |
2 | coafval.a | . . . 4 ⊢ 𝐴 = (Arrow‘𝐶) | |
3 | eqid 2622 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
4 | 1, 2, 3 | coafval 16714 | . . 3 ⊢ · = (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)} ↦ 〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓), (doma‘𝑔)〉(comp‘𝐶)(coda‘𝑔))(2nd ‘𝑓))〉) |
5 | 4 | dmmpt2ssx 7235 | . 2 ⊢ dom · ⊆ ∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) |
6 | iunss 4561 | . . 3 ⊢ (∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴) ↔ ∀𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴)) | |
7 | snssi 4339 | . . . 4 ⊢ (𝑔 ∈ 𝐴 → {𝑔} ⊆ 𝐴) | |
8 | ssrab2 3687 | . . . 4 ⊢ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)} ⊆ 𝐴 | |
9 | xpss12 5225 | . . . 4 ⊢ (({𝑔} ⊆ 𝐴 ∧ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)} ⊆ 𝐴) → ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴)) | |
10 | 7, 8, 9 | sylancl 694 | . . 3 ⊢ (𝑔 ∈ 𝐴 → ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴)) |
11 | 6, 10 | mprgbir 2927 | . 2 ⊢ ∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴) |
12 | 5, 11 | sstri 3612 | 1 ⊢ dom · ⊆ (𝐴 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∈ wcel 1990 {crab 2916 ⊆ wss 3574 {csn 4177 〈cop 4183 〈cotp 4185 ∪ ciun 4520 × cxp 5112 dom cdm 5114 ‘cfv 5888 (class class class)co 6650 2nd c2nd 7167 compcco 15953 domacdoma 16670 codaccoda 16671 Arrowcarw 16672 compaccoa 16704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-ot 4186 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-arw 16677 df-coa 16706 |
This theorem is referenced by: coapm 16721 |
Copyright terms: Public domain | W3C validator |