MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmpt2ssx Structured version   Visualization version   GIF version

Theorem dmmpt2ssx 7235
Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypothesis
Ref Expression
fmpt2x.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
dmmpt2ssx dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem dmmpt2ssx
Dummy variables 𝑢 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2764 . . . . 5 𝑢𝐵
2 nfcsb1v 3549 . . . . 5 𝑥𝑢 / 𝑥𝐵
3 nfcv 2764 . . . . 5 𝑢𝐶
4 nfcv 2764 . . . . 5 𝑣𝐶
5 nfcsb1v 3549 . . . . 5 𝑥𝑢 / 𝑥𝑣 / 𝑦𝐶
6 nfcv 2764 . . . . . 6 𝑦𝑢
7 nfcsb1v 3549 . . . . . 6 𝑦𝑣 / 𝑦𝐶
86, 7nfcsb 3551 . . . . 5 𝑦𝑢 / 𝑥𝑣 / 𝑦𝐶
9 csbeq1a 3542 . . . . 5 (𝑥 = 𝑢𝐵 = 𝑢 / 𝑥𝐵)
10 csbeq1a 3542 . . . . . 6 (𝑦 = 𝑣𝐶 = 𝑣 / 𝑦𝐶)
11 csbeq1a 3542 . . . . . 6 (𝑥 = 𝑢𝑣 / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
1210, 11sylan9eqr 2678 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
131, 2, 3, 4, 5, 8, 9, 12cbvmpt2x 6733 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑢𝐴, 𝑣𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶)
14 fmpt2x.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
15 vex 3203 . . . . . . . 8 𝑢 ∈ V
16 vex 3203 . . . . . . . 8 𝑣 ∈ V
1715, 16op1std 7178 . . . . . . 7 (𝑡 = ⟨𝑢, 𝑣⟩ → (1st𝑡) = 𝑢)
1817csbeq1d 3540 . . . . . 6 (𝑡 = ⟨𝑢, 𝑣⟩ → (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶 = 𝑢 / 𝑥(2nd𝑡) / 𝑦𝐶)
1915, 16op2ndd 7179 . . . . . . . 8 (𝑡 = ⟨𝑢, 𝑣⟩ → (2nd𝑡) = 𝑣)
2019csbeq1d 3540 . . . . . . 7 (𝑡 = ⟨𝑢, 𝑣⟩ → (2nd𝑡) / 𝑦𝐶 = 𝑣 / 𝑦𝐶)
2120csbeq2dv 3992 . . . . . 6 (𝑡 = ⟨𝑢, 𝑣⟩ → 𝑢 / 𝑥(2nd𝑡) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
2218, 21eqtrd 2656 . . . . 5 (𝑡 = ⟨𝑢, 𝑣⟩ → (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
2322mpt2mptx 6751 . . . 4 (𝑡 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵) ↦ (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶) = (𝑢𝐴, 𝑣𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶)
2413, 14, 233eqtr4i 2654 . . 3 𝐹 = (𝑡 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵) ↦ (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶)
2524dmmptss 5631 . 2 dom 𝐹 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)
26 nfcv 2764 . . 3 𝑢({𝑥} × 𝐵)
27 nfcv 2764 . . . 4 𝑥{𝑢}
2827, 2nfxp 5142 . . 3 𝑥({𝑢} × 𝑢 / 𝑥𝐵)
29 sneq 4187 . . . 4 (𝑥 = 𝑢 → {𝑥} = {𝑢})
3029, 9xpeq12d 5140 . . 3 (𝑥 = 𝑢 → ({𝑥} × 𝐵) = ({𝑢} × 𝑢 / 𝑥𝐵))
3126, 28, 30cbviun 4557 . 2 𝑥𝐴 ({𝑥} × 𝐵) = 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)
3225, 31sseqtr4i 3638 1 dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  csb 3533  wss 3574  {csn 4177  cop 4183   ciun 4520  cmpt 4729   × cxp 5112  dom cdm 5114  cfv 5888  cmpt2 6652  1st c1st 7166  2nd c2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169
This theorem is referenced by:  mpt2exxg  7244  mpt2xeldm  7337  mpt2xopn0yelv  7339  mpt2xopxnop0  7341  dmcoass  16716  ply1frcl  19683  dvbsss  23666  perfdvf  23667
  Copyright terms: Public domain W3C validator