MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dnsconst Structured version   Visualization version   GIF version

Theorem dnsconst 21182
Description: If a continuous mapping to a T1 space is constant on a dense subset, it is constant on the entire space. Note that ((cls‘𝐽)‘𝐴) = 𝑋 means "𝐴 is dense in 𝑋 " and 𝐴 ⊆ (𝐹 “ {𝑃}) means "𝐹 is constant on 𝐴 " (see funconstss 6335). (Contributed by NM, 15-Mar-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
dnsconst.1 𝑋 = 𝐽
dnsconst.2 𝑌 = 𝐾
Assertion
Ref Expression
dnsconst (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃})

Proof of Theorem dnsconst
StepHypRef Expression
1 simplr 792 . . 3 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹 ∈ (𝐽 Cn 𝐾))
2 dnsconst.1 . . . 4 𝑋 = 𝐽
3 dnsconst.2 . . . 4 𝑌 = 𝐾
42, 3cnf 21050 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌)
5 ffn 6045 . . 3 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
61, 4, 53syl 18 . 2 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹 Fn 𝑋)
7 simpr3 1069 . . 3 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) = 𝑋)
8 simpll 790 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐾 ∈ Fre)
9 simpr1 1067 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝑃𝑌)
103t1sncld 21130 . . . . . 6 ((𝐾 ∈ Fre ∧ 𝑃𝑌) → {𝑃} ∈ (Clsd‘𝐾))
118, 9, 10syl2anc 693 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → {𝑃} ∈ (Clsd‘𝐾))
12 cnclima 21072 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ {𝑃} ∈ (Clsd‘𝐾)) → (𝐹 “ {𝑃}) ∈ (Clsd‘𝐽))
131, 11, 12syl2anc 693 . . . 4 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝐹 “ {𝑃}) ∈ (Clsd‘𝐽))
14 simpr2 1068 . . . 4 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴 ⊆ (𝐹 “ {𝑃}))
152clsss2 20876 . . . 4 (((𝐹 “ {𝑃}) ∈ (Clsd‘𝐽) ∧ 𝐴 ⊆ (𝐹 “ {𝑃})) → ((cls‘𝐽)‘𝐴) ⊆ (𝐹 “ {𝑃}))
1613, 14, 15syl2anc 693 . . 3 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) ⊆ (𝐹 “ {𝑃}))
177, 16eqsstr3d 3640 . 2 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝑋 ⊆ (𝐹 “ {𝑃}))
18 fconst3 6477 . 2 (𝐹:𝑋⟶{𝑃} ↔ (𝐹 Fn 𝑋𝑋 ⊆ (𝐹 “ {𝑃})))
196, 17, 18sylanbrc 698 1 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wss 3574  {csn 4177   cuni 4436  ccnv 5113  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Clsdccld 20820  clsccl 20822   Cn ccn 21028  Frect1 21111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-top 20699  df-topon 20716  df-cld 20823  df-cls 20825  df-cn 21031  df-t1 21118
This theorem is referenced by:  ipasslem8  27692
  Copyright terms: Public domain W3C validator