MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dnsconst Structured version   Visualization version   Unicode version

Theorem dnsconst 21182
Description: If a continuous mapping to a T1 space is constant on a dense subset, it is constant on the entire space. Note that  ( ( cls `  J ) `  A )  =  X means " A is dense in  X " and  A  C_  ( `' F " { P } ) means " F is constant on  A " (see funconstss 6335). (Contributed by NM, 15-Mar-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
dnsconst.1  |-  X  = 
U. J
dnsconst.2  |-  Y  = 
U. K
Assertion
Ref Expression
dnsconst  |-  ( ( ( K  e.  Fre  /\  F  e.  ( J  Cn  K ) )  /\  ( P  e.  Y  /\  A  C_  ( `' F " { P } )  /\  (
( cls `  J
) `  A )  =  X ) )  ->  F : X --> { P } )

Proof of Theorem dnsconst
StepHypRef Expression
1 simplr 792 . . 3  |-  ( ( ( K  e.  Fre  /\  F  e.  ( J  Cn  K ) )  /\  ( P  e.  Y  /\  A  C_  ( `' F " { P } )  /\  (
( cls `  J
) `  A )  =  X ) )  ->  F  e.  ( J  Cn  K ) )
2 dnsconst.1 . . . 4  |-  X  = 
U. J
3 dnsconst.2 . . . 4  |-  Y  = 
U. K
42, 3cnf 21050 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> Y )
5 ffn 6045 . . 3  |-  ( F : X --> Y  ->  F  Fn  X )
61, 4, 53syl 18 . 2  |-  ( ( ( K  e.  Fre  /\  F  e.  ( J  Cn  K ) )  /\  ( P  e.  Y  /\  A  C_  ( `' F " { P } )  /\  (
( cls `  J
) `  A )  =  X ) )  ->  F  Fn  X )
7 simpr3 1069 . . 3  |-  ( ( ( K  e.  Fre  /\  F  e.  ( J  Cn  K ) )  /\  ( P  e.  Y  /\  A  C_  ( `' F " { P } )  /\  (
( cls `  J
) `  A )  =  X ) )  -> 
( ( cls `  J
) `  A )  =  X )
8 simpll 790 . . . . . 6  |-  ( ( ( K  e.  Fre  /\  F  e.  ( J  Cn  K ) )  /\  ( P  e.  Y  /\  A  C_  ( `' F " { P } )  /\  (
( cls `  J
) `  A )  =  X ) )  ->  K  e.  Fre )
9 simpr1 1067 . . . . . 6  |-  ( ( ( K  e.  Fre  /\  F  e.  ( J  Cn  K ) )  /\  ( P  e.  Y  /\  A  C_  ( `' F " { P } )  /\  (
( cls `  J
) `  A )  =  X ) )  ->  P  e.  Y )
103t1sncld 21130 . . . . . 6  |-  ( ( K  e.  Fre  /\  P  e.  Y )  ->  { P }  e.  ( Clsd `  K )
)
118, 9, 10syl2anc 693 . . . . 5  |-  ( ( ( K  e.  Fre  /\  F  e.  ( J  Cn  K ) )  /\  ( P  e.  Y  /\  A  C_  ( `' F " { P } )  /\  (
( cls `  J
) `  A )  =  X ) )  ->  { P }  e.  (
Clsd `  K )
)
12 cnclima 21072 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  { P }  e.  (
Clsd `  K )
)  ->  ( `' F " { P }
)  e.  ( Clsd `  J ) )
131, 11, 12syl2anc 693 . . . 4  |-  ( ( ( K  e.  Fre  /\  F  e.  ( J  Cn  K ) )  /\  ( P  e.  Y  /\  A  C_  ( `' F " { P } )  /\  (
( cls `  J
) `  A )  =  X ) )  -> 
( `' F " { P } )  e.  ( Clsd `  J
) )
14 simpr2 1068 . . . 4  |-  ( ( ( K  e.  Fre  /\  F  e.  ( J  Cn  K ) )  /\  ( P  e.  Y  /\  A  C_  ( `' F " { P } )  /\  (
( cls `  J
) `  A )  =  X ) )  ->  A  C_  ( `' F " { P } ) )
152clsss2 20876 . . . 4  |-  ( ( ( `' F " { P } )  e.  ( Clsd `  J
)  /\  A  C_  ( `' F " { P } ) )  -> 
( ( cls `  J
) `  A )  C_  ( `' F " { P } ) )
1613, 14, 15syl2anc 693 . . 3  |-  ( ( ( K  e.  Fre  /\  F  e.  ( J  Cn  K ) )  /\  ( P  e.  Y  /\  A  C_  ( `' F " { P } )  /\  (
( cls `  J
) `  A )  =  X ) )  -> 
( ( cls `  J
) `  A )  C_  ( `' F " { P } ) )
177, 16eqsstr3d 3640 . 2  |-  ( ( ( K  e.  Fre  /\  F  e.  ( J  Cn  K ) )  /\  ( P  e.  Y  /\  A  C_  ( `' F " { P } )  /\  (
( cls `  J
) `  A )  =  X ) )  ->  X  C_  ( `' F " { P } ) )
18 fconst3 6477 . 2  |-  ( F : X --> { P } 
<->  ( F  Fn  X  /\  X  C_  ( `' F " { P } ) ) )
196, 17, 18sylanbrc 698 1  |-  ( ( ( K  e.  Fre  /\  F  e.  ( J  Cn  K ) )  /\  ( P  e.  Y  /\  A  C_  ( `' F " { P } )  /\  (
( cls `  J
) `  A )  =  X ) )  ->  F : X --> { P } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   {csn 4177   U.cuni 4436   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Clsdccld 20820   clsccl 20822    Cn ccn 21028   Frect1 21111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-top 20699  df-topon 20716  df-cld 20823  df-cls 20825  df-cn 21031  df-t1 21118
This theorem is referenced by:  ipasslem8  27692
  Copyright terms: Public domain W3C validator